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Jamming transition in a homogeneous one-dimensional system: The bus route model
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We present a driven diffusive model that we call the bus route model. The model is defined on a one-
dimensional lattice, with each lattice site having two binary variables, one of which is cons&bueses’™)
and one of which is nonconservétipassengers). The buses are driven in a preferred direction and are
slowed down by the presence of passengers who arrive withxrai®e study the model by simulation,
heuristic argument, and a mean-field theory. All these approaches provide strong evidence of a transition
between an inhomogeneous “jammed” phdadere the buses bunch togethand a homogeneous phase as
the bus density is increased. However, we argue that a strict phase transition is present only in the limit
—0. For small\, we argue that the transition is replaced by an abrupt crossover that is exponentially sharp in
1/\. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation
of the model is given in which the spaces between buses and the buses themselves are interchanged. This
describes a system of particles whose mobility decreases the longer they have been stationary and could
provide a model for, say, the flow of a gelling or sticky material along a gip&063-651X98)01808-X]

PACS numbsg(s): 05.70.Ln, 64.60-i, 89.40+k

I. INTRODUCTION AND MODEL phase, which is uniform, but which has a mean particle ve-
locity lower than that of the jammed phase. Indeed, it ap-
Driven diffusive system§l] have recently attracted much pears that a minimum velocity principle appligd®], so that
attention in the field of nonequilibrium statistical mechanicsthe stable phase is always the slowest available at a given
from a fundamental viewpoint, as well as in the context ofmean density.
traffic modeling[2], interface growtH 3], and other applica- In this work we address the question of whether similar
tions[4]. “jamming” transitions can occur in 1D homogeneous sys-
One patrticularly interesting feature is the possibility oftems, i.e., systems with periodic boundary conditions and
phase ordering and phase transitions in one-dimensionalithout disorder or defects. We introduce a model that ex-
(1D) systems. To appreciate the significance, one should rdiibits a jamming transition in a certain limito be specified
call that in 1D equilibrium models, ordering only occurs ei- below). For the moment, it is useful to describe the model in
ther in the limit of zero temperature.g., kinetic Ising mod- terms of a commonly experienced and universally irritating
els or deterministic Ginsburg-Landau equation in mean-  situation. Consider buses moving between bus stops along a
field-like models. However, in nonequilibrium systems it hasbus route. Clearly, the ideal situation is that the buses are
been demonstrated that ordering may occur in models witlevenly distributed along the route so that each bus picks up
fully stochastic, local dynamidb—7]. roughly the same number of passengers. However, owing to
The nonequilibrium transitions found so far appear to besome fluctuation, it may happen that a bus is delayed and the
of three main typegalthough very recently, novel phase gap to the bus in front of it becomes large. Then, the time
separation phenomena have been demonstrated in some &lapsed since the bus stops in front of the delayed bus have
systemg8,9]). First there are boundary induced transitionsbeen visited by the previous bus is larger than usual and
[10,6]. These occur on open systems with a dynamics thatonsequently more passengers will be waiting at these bus
conserves some quantity in the bulk, but that allows injectiorstops. Therefore the bus becomes delayed even further. At
and extraction of the quantity at the boundaries. A seconthe same time, the buses behind catch up with the delayed
class of transition, describing roughening of a 1D interfacepus and pick up only very few passengers since the delayed
is connected to directed percolation and corresponds to laus takes them all. Hence a “jam” of buses forms. Inspired
driven diffusive system with nonconserved order parameteby this scenario we shall formulate a model below, to be
[11,12. Finally, there are transitions induced by defect siteseferred to as the bus route modBRM).
[13,14) or particled15—-18 or the presence of disordgt9— We defer the mathematical definition of the BRM until
21]. In this class of systems, the presence of the defecifter we have discussed the general context. Already, from
causes a macroscopic region of high density to form. Analothe simple picture discussed in the previous paragraph, we
gies with Bose-Einstein condensati¢h9] and liquid-gas can identify a conserved variablthe busesand a noncon-
phase coexistencgl7] have been made. An even simpler served variabléthe passengersThe passengers are noncon-
way to view the phenomenon is as a jamming transition; theserved since they arrive at the bus stops from outside the
defect causes a traffic jam to form behind it. In this contextsystem(bus rout¢. The conserved buses are driven in a pre-
however, “jamming” may be a somewhat misleading term,ferred direction. We may usefully think of the nonconserved
since in the models just described the inhomogeneousariable coupling to the conserved variable and mediating
“jammed” phase arises dbw density. The transition is in the jamming transition.
fact between this phase, and a higher density “congested” Associated with any ordering dynamics is the phenom-
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enon of coarseninfR2] where the typical domain length of

the ordered phase grows indefinitely with time. Indeed, o B B “
coarsening has been studied in ballistic aggregation models 7N 7N T
[23] and disordered driven diffusive systems where jamming s S 2 B B2

occurs[20,24. Again, a contrast can be made with 1D equi-
librium models where only zero temperature models or

mean-field-like models coarsen. In the present model, it is

the gaps between the jams that coarsen as the jams aggR@Wn by having to pick up passengers. We maysequal
gate: we study this phenomenon in the present work. to 1 without loss of generality and from now on we consider

In a finite system, the coarsening eventually results in on@Nly this case. We note that the dynamics is local and does
large jam with a single gap in front of it. Recalling that the not .satlsfy de_talled balance. The model is illustrated sche-
model system is homogeneous and that no bus is preferrdégatically in Fig. 1.

over any other, we see that we have a spontaneous symmetry Although the language of "buses” and “passengers”
breaking where the symmetry between buses is brokeRrovides an appealing mental picture, the model is intended

through one bus being selected to head the jam. Symmet|1>9 be simple rather than realistic. For ex.ample, thg n.eed for
breaking transitions have been previously found in 1D opeRUses to stop to allow passengers to disembark is ignored.
systems with a nonconserved variable at the boundgsi@s Note, however, that an ability for buse§ tp overtake Qach
and in a class of growth mode[d1]. The present model _other wou!d hgve almost no eff_ect. This is because,_ in a
provides an example in a homogeneous system with a cos@mmed situation of the type discussed below, the inter-
served variable. Related symmetry breaking has also beéiange of a fast-moving bus with a slower moving one in
noted in some models in a class of “backgammon” orfront also interchanges their velocities. , _

“palls in boxes” models that are effectively simple gener-  1h€ main purpose of this paper is to provide evidence that
alizations of Bose systeni&5—27. However, in these mod- the model defined above un_dergoes_ a jamming tran5|t|on.
els the dynamics is inherently equilibrium and mean-field-However, we argue that a strict transitire., a singularity

like whereas the BRM has local dynamics that does not" Some measured quantitpnly occurs as\—0 and in the
satisfy detailed balance. We shall elucidate the connectiof’€rmodynamic limit. Here we define the thermodynamic
between the two classes of models by showing that a meafimit as
field approximation to the BRM results in a model that may

be solved analytically. The steady state of this soluble mean-

field model falls into the class of generalized Bose systems, . '

We now formally define the BRM38]. The model is With p held fixed. )
defined on a 1D lattice with periodic boundary conditions. o evidence is both numerical and analytical. In Sec. II
Each lattice site is labeled by a numbemunning from 1t0 e present Monte Carlo simulations that provide evidence
L. Sitei has two binary variables; and ¢; associated with  or the above picture. In the following sections we provide
it. These variables can be described in the following termsy 4ioys analyses to support the picture. In particular, in Sec.
(i) If site i is occupied by a bus them=1; otherwiser; || A we present a simple two-particle approximation that de-
=0. (i) If site i has passengers on it thgn=1; otherwise  scribes the stability of jams. In Sec. Il we define a mean-
¢i=0. Each site can be thought of as a bus stop on a buge|d approximation. Within this approximation we can solve
route. A site cannot have both=¢;=1 (i.e., it cannot have = analytically for the steady state and find it is similar to a

FIG. 1. Schematic illustration of the BRM.

M,L—o0

a busand passengerls generalized ideal Bose gas or backgammon model. This
There areM buses and. sites in the system and the bus steady state can be analyzed and exhibits a phase transition
density (taking the form of a condensation transitianly asA—0
in the thermodynamic limit. We show that the mean-field
p=MI/L (1) steady state agrees quantitatively with Monte Carlo simula-

tions of the BRM, suggesting that for the BRM also there is

is a conserved quantity. However, the total number of sitesio strict transition for nonzerd. We also study numerically
with passengers isot conserved. The update rules for the the behavior a3 —0 in the mean-field approximation.
system are as followg1) Pick a sitei at random.(2) If = In Sec. IV we study the approach to the steady state in the
=0 and ¢;=0 then¢;—1 with probability\. (3) If =1  jammed phase where we observe coarsening of bus clusters.
and ;. 1=0, define a hopping rate as follows:(i) u=« if We argue that on an infinite system the size of the large gaps
¢i.1=0; (i) u=B if ¢i,1=1, and updater;—0, 74, between clusters should eventually growt¥8 We study
—1 and¢; ,,— 0 with probability . finite systems numerically. In Sec. V we discuss an interpre-

Thus, « is the hopping rate of a bus onto a site with notation of the BRM wherein we consider the vacant shies
passengers andl is the hopping rate onto a site with passen-tweenbuses to be the moving entities in the system. Viewed
gers. The probability that a passenger arrives at an empty sitbis way, the nonconserved variable now describes an inter-
is\. When a bus hops onto a site with passengers, it removasal degree of freedom of the moving entities themselves,
the passengers. While we have taken the passenger varialsgher than of the sites they visit. We discuss possible physi-
¢, to be binary, this does not forbid the presence of morecal interpretations of this dynamics, including a model of
than one passenger at a site; we merely require that the extedogging. In Sec. VI, we consider the relevance of the BRM
passengers have no further effect on the dynamics. We getn real bus routes and in Sec. VII, we conclude with a dis-
erally take B< «a, reflecting the fact that buses are slowedcussion of the main points of our work.
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Il. SIMULATION RESULTS AND HEURISTIC
ARGUMENTS Iy

The model defined above captures an important feature of
the bus route problem described in the Introduction, namely,
that once a gap between buses becomes large through som
fluctuation, the tendency is for the gap to become still larger:
since buses move more quickly in areas with few passengers,
a bus that is following closely behind another will tend to
move faster than one that is a long way behind the bus di-
rectly in front. This is simply because the closer a bus is to
the one directly ahead of it, the less time passengers will
have had to arrive. If this tendency for large gaps to grow
were to prevail, the result on a finite system would be a
single jam of buses and one large gap. We first argue that in
the limit of A\—0 butAL— < this scenario can only hold at
low enough density of buses, and that a phase transition to ag
homogeneous phase will result as the density is raised. 2=

First consider a system comprising a single large jam. In
order for this to be a stable object, the veloditdefined as
the average rate of hopping forwamf the leading bus must
be equal to the velocity of any bus inside the jam. Now if (g 2 Space-time plot of bus positions for=0.02, p=0.55,

AL —, the probability that the site immediately in front of -0 5 and =500. There are 10 time steps between each snapshot

the leading bus has a passenger on it tends to @es is  on the time axis. Initially the buses are positioned randomly and
because the rate of passenger arrival, multiplied by the timgere are no passengers.

delay between the final bus of the jam and the leading bus of
the jam crossing the same site, is of ordlér) Therefore the
velocity of the leading bus will approac. On the other
hand, if A —0 the probability that a site within the jam has
passengers tends to zero since these gaps are of finite leng 8 tion int ; f d densit
Therefore, since the velocity of a bus in the jam will only beP ?Se sdepara'lon into reg|r?nsfc; nonfzero an zerol ensity.
limited by the presence of neighboring buses, this veIocityF. n 40trh:rsttga'gve§;?ea;e (targ E; egltoo.tvgrg'?gnz\t'% rﬁ) gft tlr?e

Will be 1= pjam Wherepiam is the density of busesithin the d:agﬁsit As steym size =V10 gOvaa?ghoseﬁ sirllce using a
jam. (This follows from the fact that, when—0 with AL bi eryé steym did not appreciably affect the results Legt us
—o0, the situation is equivalent to a model of hopping par- 99 y'd h | Ff)p -0 3'/: ~0.1. th | s

ticles with a single slow “defect” particld19].) Equating first consider t ehrlesu tsh Cﬂ;_ S 'og\— ‘ ,tde vz ocity

the two velocities yieldgj,n=1— 8. However, the jam must mcreaser? SranOt yl??}lt € en_T,_lrt]y IS decrease arf1 apﬁears to
clearly have density greater thanthe overall density of the approachg for small density. There is no sign of a phase
system. Thus for jamming to occur we require

Space

finally, the system comprises a single large jam. There is one
large interbus gap in front of the jam whereas the jam itself
ﬁgntains many small gaps. The behavior can be thought of as

p<pc Where pPc= Pjam=1-pB. 3 A

For densities above this critical value, the system will be in a
congested phase where gaps between buses are uniform.

An equivalent way of obtaining Eq3) is to compare the
velocity in the jammed phase3, and the velocity in the
homogeneous phase;-J. The phase with the lowest veloc-
ity is chosen by the system. This procedure is analogous to
the thermodynamic procedure of choosing the phase with the
lowest chemical potential. Though unproven for the present
problem, in the case of disordered exclusion processes the
analogy has been shown to be exidd].

We now present simulations that, for smal] qualita-
tively support the above picture of a phase transition. Figure
2 shows a space-time plot of the buses in the system at
=0.55 for smallx (A=0.02). The buses are distributed &
fairly homogeneously throughout space. There are no very &=
large gaps present in the system. Figure 3 shows a space-
time plot for p=0.2, which is less thap, of Eq. (3). In this
case, starting from a random configuration of buses, large
gaps quickly open up and small clusters or “jams” of buses FIG. 3. Space-time plot of bus positions for the same parameters
are readily seen. Gradually, these small jams coarsen untis in Fig. 2 except that herp=0.2.

Space
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' ' ' ' walker hopping with rate, wherev is the average velocity
0.5 | o—e—g—g—g—o—oosommy . of the system. Then the average time sidckeft the site in
° front of B is x/v. Since the rate of arrival of passengera is
oa we then havd (x) =exp(—A\x/v) and
u(x)=B+(1-pB)exp—Ax/v) for x>0, @
, 00 =—84=01,p=05 u(0)=0.
e—o % =0.05p=05 : : . -
| e—©%-002p=05 | The use of gxpressm(lzl? for .the hopping rates is in the spirit
02 —aA=002, B =01 of a mean-field approximation. We have found by simulation
that the approximation is a good one f@rarger than about
01 | | 0.2, but for small3 it breaks down. In particular, for small
' B W (when g is smal) we find thatu(x) decays tq3 much more
rapidly than Eq.(4) predicts. We believe that the reason for
0.0 . . . . this is the failure of Eq(4) to take into account time corre-
0.0 0.2 0.4 0.6 0.8 1.0 lations in the hopping of buses—when a bus is updated and

p fails to hop into an unoccupied site, the next time it is up-

FIG. 4. Velocity as a function of density for various values\of dated it should hop with probabiligg andnot u(x) (because

and 8. The simulations were performed with=10 000. The lines for a bu_s tp fail to hop, the site aheamSt_Comam passen-
are shown to guide the eye. gers; this is no longer true far# 1, but time correlations

will still be present. Clearly, the effects of neglecting these

transition. For, =0.05 a similar picture holds although now time correlations will be largest for smg8l. We shall return
the curvev(p) is more concave. to Eqg.(4) in Sec. Ill where we carry out a conventional mean

A strikingly different picture is obtained foh=0.02. field theory for the many-particle problem. For our present

There is an apparent discontinuity in the derivativeyp) ~ PUrPOSes, we replace by 8 in Eq. (4) since we are inter-
at some value of the densify* =0.45. Belowp*, the data ested in a jammed 5|tuat|o_(me., we assume that bus al-
are consistent withy= whereas above*, v decreases WaYS has passengers to pickjup ,
almost linearly with increasing density. This behavior is con- USing the mean-field hopping ratex) we may write a
sistent with the simple picture of a jamming transition dis- -@ngevin equation for the dynamics of the gap size:
cussed above. It is also very similar to the velocity-density
relationship in an exactly solvable model with a single slow
particle [19,20 where a jamming transition occurs. The
graph therefore suggests that a phase transition may occ

for small A. We argue, however, that the phase transitio Since we are primarily interested in the effectsial) A on

occurs only in the limit\—0 and that this limit has to be : ; ; .
taken in an appropriate way. In order to quantify this we nowthe dynamics of the gap, we ignore this dependdriteis

analyze a simple two-particle approximation to the full sys-Can be written in the form

x=u(kL—X)—u(x)+ 7(t), (5)

where(t) is a noise terngsay white noise of unit variange
he variance of the noise should strictly depend®but,

tem. . d
X=—gx 2+ 7(0), (6)
A. Two-particle approximation
Consider a system containifd buses. Let us assume that where
there is a jam in the systefine., a gap with sizéd(L)]. If B(1-B)
there is a jamming transition then such a gap should become D(x)=— : [e MKL=/B 4 @=MIB] (7)

stable in the thermodynamic limit; the bus at the head of the
jam should not be able to escape into the large gap. Let
consider the two buses andB at the head of such a jam as
shown in Fig. 5. The gap in front & has sizekL—x where
k is independent of. The gap in front oB has sizex. We
now assume that we can write the hop rate of either bus as
function only of the gap size in front of that bus. To do this
we write u(x)=f(x)+ B[1—f(x)] wheref(x) is the prob-
ability that there are no passengers on the first site of a gap
sizex. To estimatef (x) we assume that bus is a random

YPhe gap sizex has the dynamics of a particle undergoing
diffusion in a potentiakb (x) for x>0. There is a reflecting
boundary atx=0 and the potential has a maximum xt
=kL/2. Therefore fox<x* the patrticle is trapped in a well
(%<x<x*) and bound to the reflecting boundary, i.A.js
bound to the head of the jam. K>x*, the particle has
&scaped from the well andl is no longer at the head of the
jam. The well deptA® =& (x*)—P(0) is given by

1_
mﬂ(x) mu(kL—X) A(I): B(Tﬁ)[l_e*)\kL/Zﬁ]z. (8)

@ Gap of size kL-x

- When the thermodynamic limit —o is taken,A®— B(1

— B)I\, which is finite forA>0, indicating that the jam is

FIG. 5. The two buses at the head of a jam in a system oflsize unstable. However, when the limit—0 is now takenA®
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Time
Time

Space

FIG. 6. Space-time plot of bus positions far=0.02, p=0.2, FIG. 7. Space-time plot of bus positions for the same parameters
B=0.1, and. =500. There are 20 time steps between each snapshats in Fig. 6 except that herg~=0.002.
on the time axis. Initially the buses are positioned randomly and

there are no passengers. seen forB=0.5 is taking place. However, closer inspection

. . . o of the individual jams shows that they can develop large
diverges and particl& becomes bound to partice—in this  gaps and, in some cases, divide into smaller jams. The steady
limit the jam is a stable object. This simple analysis suggeststate for this system is therefore not characterized by a single
that there is a phase transitidhetween a jammed and a |grge jam(as appeared to be the case from simulations for

homogeneous phase as the density is raiealy in the limit =0.5), but comprises a number of jams of varying sizes.
A—0. For small\, the time scale associated with the detach- Figure 7 shows a space-time plot for the same valug of

ment of particleA from the head of the jam is, to a first (g 1) put forn =0.002, a factor of 10 smaller. It appears that
approximatior(28], given for largeL. by the jamming has been restored—the individual jams are not
(1-B) seen to break up. It is also interesting to note that splitting of
u ] (9) jams is not observed fo8=0.5 (Fig. 3) so the splitting in
A Fig. 6 is a direct consequence of having a smaller valyg. of
) . Figure 4 also shows(p) for A=0.02 andB=0.1. Unlike
The prefactorL reflects the facts that the well width de- 4,0 caseB=0.5,v(p) is a smooth function with apparently
pends linearly orL. and that, for nonzera, particleA es-  q giscontinuity in its derivative. This is consistent with the
capes diffusively. When is small but nonzeror is expo-  gpservation that the jammed state is unstable on the time
nent|a!ly Iarg(_a in X and it can appear that a jam is stable g¢51e of the simulatiorsee Fig. 6.
when in fact it is not. We therefore conclude from our two-particle argument
_Itis clear that the limits. — 0 andL — do not commute  tnat although the simulation data are indicative of the pres-
since as\—0 on a finite system one recovers a model wheresnce of a phase transition, it cannot be taken as firm evidence
all hopping rates are the same. Such a model of hoppingyat 5 strict transition occurs for any nonzero However,

particles with hard core exclusidknown as an asymmetric o small A something closely approaching a transition is
exclusion procegshas been well studied and exhibits no ggen.

phase transition with periodic boundary conditidrg. In
practice, one could take the limit—«~ and thenA —0 by
choosing I1l. MEAN-FIELD MODEL

7-~L2exp(A<D):L2exp{

A~L"7 with y<1 (10) In this section we discuss a mean-field theory that we
believe describes the behavior of the BRM very well. Moti-
and taking the thermodynamic limit—c whereupon the Vated by the mean-field probabilit#) of hopping into a gap

escape time diverges exponentially in the system size: ~ Of @ given size, derived in Sec. Il A, we approximate the
BRM by a model that is exactly solvable in the steady state.

7~L2%expal?) (11) We term this new model themean-field modelMFM). We
analyze this MFM and show that it compares quantitatively
and the jam is a stable object. well with the BRM and, importantly, that it does not have a

In order to test this picture against simulations, we plot inphase transition fok>0. However, we find that there is a
Fig. 6 a space-time plot fo8=0.1 andA =0.02 for a low transition in the MFM in the limik—0 so long as the ther-
density. At first glance, it appears that jamming just like thatmodynamic limit is taken first. This supports our view that
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the same applies in the BRM itself. ds [ F(s) |
We define the MFM to be a hopping particle modgén- Z(p,M)= ﬁg sl 1| (15
eralized asymmetric exclusion procg4$ with the hopping mS| s

probability of theith particle beingu(x;), a function ofx; ,
the size of the gap in front of that particle. As in the BR
we considerM particles andL sites in total, and periodic %
boundary conditions apply. The hopping probabilitig) F(s)= 2 q(x)s*. (16)
are given by the mean-field expressi@). Note thatu(x) x=0

depends om, which is the steady state mean velocity of the ) . . .
systemyu). It is useful to think ofv in Eq. (4) as an adjust- The integral(15) is calculated in the thermodynamic limit

able parameter in the MFM to be determined self-[defined in Eq(2)] using t_he saddle p(_)int_method. It can be
consistently; i.e.y is chosertfor fixed p, 8, and\) so that shown that the saddle point, wheye z, is given through the
(Uy=v. expression

While u(x) is given by Eq.4) for the MFM, it is conve- 1
nient tq first C.on5|der a more ggnenaﬂx), with the only ——1=z9(2), (17
constraints beingi(0)=0 (exclusion and u(x)— 3" asx P
—oo. When one considers the dynamics of the gaps between
particles, it is evident that such a model is an example o'
what is known in the mathematical literature as a zero-range F'(2)
process[29,30, which is exactly soluble(in the steady g(2)= ———. (18
statg. We present the solution in detail in the Appendix and F(2)
guote the result here. Each configuration can be uniquel
identified by a set of gap sizd%}={x1,X2, ... Xu}. The
steady-state probability of a configuratifx} is

M wherep=M/L and we have defined the generating function

here

We may identifyz as the fugacity. Each value of the fugacity
gives a particular value of the density. The partition function
becomes

1 ~ —(l —
P(X)= 57 0WACR) - a0w), (12 2p.M)~exiM INF(z)~ (L=M)inz)} (19
’ with z for a particularp determined by solving Eq17).
where To obtain quantitative results from this solution, it is use-
ful to obtain an expression fgu(x), the steady state prob-
ability that a given particle has a gap of sizén front of it.

g(x)= H L (13 For anyL andM, p(x) is given by
y=1 U(Y)
q(x)
and p(x)= mxzygm A(X2) - - - A(Xm) Bxys -+ L-M—x
Z(L-x—1M-1)
Z(L,M)= Oyt txe L—M - =
(L,M) E A(X2) - - A0 S+ -y L M(M) 9005w (20

This can be determined for a finite gap skze the thermo-
Z(L,M) can be viewed as the partition function of a gener-dynamic limit using the saddle-point expression Zgt.,M)
alized noninteracting system of Bose particles. We followgiven in Eq.(19). We obtain
Bialas, Burda, and Johnst¢@6] in the consequent analysis,
starting from the expression f@(L,M). We first discuss the
behavior for generali(x) in the thermodynamic limit and
state the conditions thai(x) must satisfy in order for a
phase transition to occur. Turning to the specific case of th@his expression is in terms af but p may be found using
MFM, we show that there is a phase transition in the limitEq. (17).
A—0. We describe a method for analyzing finite systems The mean particle velocity in the steady state is
and we compare the MFM with simulation results for the

X)Z*
0=

(21)

BRM. Finally, we discuss the behavior for small, but non- -
zero,\ Y v=(u)= 2>, u(x)p(x). (22
T x=1
A. Mean-field model in the thermodynamic limit Substituting Eq.(21) into Eq. (22) gives the result thab

=z. This is a relationship that has been found before in this
kind of systen]19]. We show below that is constrained to
ds ™ be no greater thag and hence, there is an upper limit on the
Sun= O =— velocity. This constraint orz combined with Eq.(21) im-
’ 2l g+l plies that in the thermodynamic limip(x) is a monotoni-
cally decreasing function ot and behaves for large as
we write Z(L,M), defined in Eq(14), as p(x)e(z/ B)*.

Using the integral representation of the Kronecker delta
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We now examine the criteria tha(x) must satisfy for a and Ill D, together with the discussion in the context of the
phase transition to occur. This entails analysis of the geneBRM in Sec. Il, lead to the conclusion that the low density
ating functionF(z) defined by Eq(16). F(z) converges for phase comprises a jam in which the leading particle hops
z< B and diverges foz> g [since we havau(x)— 8" as  forward with probability 8 (because the site in front of it
x—o]. Now, g(z=0)=0, which corresponds tp=1. Ob-  contains passengers but no huand all following particles
serve thag(z) is a monotonically increasing function for 0 hop forward with probability 1, so long as the site in front
<z= 3, which means that decreases monotonically from 1 contains no bugwhich holds with probabilityg).
to 11+ Bg(B)] for z in this range. It is clear then that
g(B), if finite, will give a critical density,p., via Eq.(17). B. Finite systems
Indeed, Bialas, Burda, and Johnst#6] show that in this
case there is a transition from a high density “congested”
phase to an inhomogeneous “jammed” phase forp.

It is possible to analyze the MFM for finite systems since,
using Eq.(20), we have

where a single gap will occupy a finite fraction of the sites in L-M L-M Z(L—x—1,M-1)q(x)
the system. The critical density is given by 2 p(x)=1= 2 ! '
x=0 x=0 Z(L,M)
) 1
pc=lim 23 \which gives the following recurrence relation fafL,M):

Z_}ﬁ,l%—zg(z)
L-M

For a transition to occur at nonzero denS|ty, we must have Z(L,M)= E Z(L—X—l, M —1)q(x) (27)
x=0

g(z) [and hence bothi-(z) and F'(z)] convergent asz

—>ﬂ7,
For convenience, we writa(x)=p8[1+ {(x)]. By con-  with the initial conditionZ(L,1)=q(L—1).
sidering the asymptotic behavior of the proda¢k) in the In principle, one can calculaté(L,M) for anyL andM.

largex limit, one finds that a phase transition occlirs.,p. ~ However, numerical precision restricts the practical maxi-
is nonzer if and only if {(x) decays to zero more slowly mum values ofL and M to ~2000. In practice for these
than 2k asx— . For the MFM, whereau(x) is given by Eq.  finite system calculations, it is not feasible to retain the de-
(4), we have{(x)~exp(—Ax) and we immediately see that pendence ofi(x) onv and so we simply take =g in the
there is no transition fok>0. We now show that, in con- expression4) for u(x). This is a good approximation since

trast, in the limit\—07, a transition does occur. we are principally interested in the case wheres close to
For the MFM, F(z) is given by B.
NEAR C. Comparison with
F(z)= - S 24 . Comparison with BRM
2 xgo (ﬁ) yljl 1+4(y) 9

We now proceed to compare MFM results with BRM
whereZ(x) = (1/8— 1)exp\x/v). To show that a transition simulation data. All the results presented for the MFM are

occurs in the limit\—0*, we must show that based on a calculation of the gap size distribupgr). It is
not possible to obtain a closed analytic expressionpfot)
lim lim F(z) and Ilim Im F’'(2) (25) and so one must perform the calculation numerically for a
z—B” A—0" z—p~ A—0" given pair of parameterg and.

Figure 8 showsy(p) for the BRM and the MFM; the
agreement is quite good. Fer=0.1, we have found numeri-
lim lim F(z2)= lim lim F'(z)=c. (26) cally that in the BRM, system size is not an i.mportant.factor

for large enough systems andp) for L=1000 is essentially
the same a®(p) in the thermodynamic limit[The major
Since forA>0 bothF(z) andF’(z) diverge where= B, the  part of the small discrepancy between the MFM datalfor
requirement(26) is satisfied trivially. Note that if the limit =21000 and. =« at high density can be attributed to the fact
A—0 is takenbeforethe thermodynamic limit, values of the that the calculation for the finite system is performed with
fugacity greater thag are permitted and we recover a model being replaced bys in the expression fou(x).]
where all particles hop with probability 1. Recall from Fig. 4 that in the BRM, where we had

We now show that the expressions in EB5) are finite =10 000, forh=0.02 andB=0.5,v(p) exhibited an appar-
and we calculate the critical density. Cleay(z) andF’(z) ent discontinuity in its derivative, a possible signal of a phase
both converge foh =0 whenz< g [since the geometric part transition. For the MFM in the thermodynamic limit with the
(z/B)* dominates the series for largd. Since 1+ /(x) same parameters,(p) is very similar (see Fig. 8 but we
=1/8 for =0, one can easily calculaté(z)=>z" and know that it is actually a smooth function and that there is no
F’(z)=3=xz*"1. Using the saddle-point equatidfi7), one transition. This is consistent with our view that there is in
finds that the density is 1—z. Therefore, the critical density fact no phase transition in the BRM far>0. Figure 8 also
is nonzero and is given by.=1— 8. We anticipated this shows that, for this value of (unlike A=0.1), there is a
result in the discussion in Sec. Il in the context of the marked finite size effect dt=1000 comprising a bump in
—0 transition in the BRM. Note that the analysis given herev(p). The bump appears for both the BRM numerics and the
does not make any predictions about the behavior for densMFM calculation. The reason for the presence of the bump is
ties belowp.. However, the results presented in Secs. Il Cthat the size of the large gap in front of a jam decreasés as

both converge and also that

z—BTA—0" z—pt A=0t
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FIG. 8. Velocity as a function of density for the BR{dimula-

P

FIG. 10. MFM gap size distributions on a linear-log scale for a

small system showing the effect of decreasindgrhe other param-

tion) and the MFM(calculation) for A.=0.1 andA =0.02. 8 is 0.5
and L is 1000. MFM data for the thermodynamic limit is also

shown.

B) for densities sufficiently close tp,=1— .

eters are8=0.5, p=0.2, andL =1000.

D. Small A behavior of MFM

We now examine in detail the behavior of the MFM when

decreases, resulting in the “head” of the jam catching up is small(but nonzerg. Figure 10 shows the effect on the
with the “tail” (and hence an average velocity greater tharMFM gap size distribution of decreasingtowards zero in a

finite system. ForA=0.05, p(x) decreases monotonically

Figure 9 compares the BRM and MFM gap size distribu-from a maximum ak=0. As\ is decreasedy(x) becomes
tions for small systems in the jammed regime. The distribubimodal, signaling the presence of jams. The second peak
tions are bimodal with the approximately Gaussian secon®ecomes more pronouncedlass made smaller; jamming is
peak corresponding to the presence of a single large gap Bnhanced.
the system. The agreement between simulation and MFM is In order to quantify the behavior gi(x) as\—0, we
again reasonably good. The MFM distribution in the thermo-define Pe,; as the area under the peak in the tailpgk).
dynamic limit is also shown and one can see that it decay3henP,is the probability of finding an extensive gap in the
monotonically, but very slowly, for large gap sizes. We havesystem andP.,X M is the average number of extensive gaps

found that the position of the peak in the tail p{x) in-

in the system. Figure 11 shows plots Bf, < M againstM

creases linearly with system size as one would expect—théor various values oh. As \ is decreased from 0.05, one
peak corresponds to the presence of an “extensive” @p must go to larger systems to obse®gx M falling below

1. This suggests that in the limit—0, a single extensive
gap survives in the thermodynamic limit, supporting our

gap with sizexL).

claim that a condensatigier jamming transition does occur

in this limit.
- L= 1000 (BRM) 8
« L =500 (BRM)
10 - - - MFM (thermodynamic limit) . . T
—— MFM (finite size)
z ] 3=0.02
> “ 10 -
3 10 *=0.03
3 =0.
Q
o 7 0.8 1
Q
& 10°
(7]
Q E« 0.6 - 1
v i n.é
O 2=0.04
-8
10 04 - B
a A=0.05
107 02 1
0.0 200.0 400.0 600.0
Gap size x
o0 0 5'0 160 150 200
FIG. 9. BRM (simulation and MFM (calculatior) gap size dis- M

tributions on a linear-log scale for small systems in the jammed
regime (3=0.5, \=0.02, p=0.2). The MFM distribution in the
thermodynamic limit is also shown.

FIG. 11. P X M againstM for the MFM showing the effect of
decreasing\. The other parameters a=0.5 andp=0.1.
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FIG. 12. Linear-log plot of the typical large gap si¢eagainst

-1

1/\ for the MFM in the thermodynamic limit. The density is fixed FIG. 14. Linear-log plot ofc,. against IX for the MFM in the
at p=0.3 andg is 0.5. The lines are shown to guide the eye. thermodynamic limit.3 is 0.5. The lines are shown to guide the
eye.
We showed in Sec. Ill A that for the MFM in the thermo-
dynamic limit, p(x) is proportional to {/B)* for large x.  wards zero in the thermodynamic limit. Asis decreased, a
Therefore, the typical size of the large gaps in the system iScorner” becomes apparent at a density slightly below 0.5.
the decay constant gf(x), given by This behavior is also observed in the BR{dee Fig. 4
While we know that there is no singularity n(p) for A
. In(é) (29 >0, one can see that as-0, v(p)—p for p<0.5 and
v v(p)—1—p for p>0.5. We now examine the sharpness of
the crossover from the low density jammed regime to the
Figure 12 shows a linear-log plot af against 1X for p ~ high density homogeneous regime for small _
=0.3. We see&~exp@/\) (wherea is a constantfor small To estimate the sharpness of the crossover for a given set
\ so that the typical size of the large gaps is very large foiof parameters, we calculaigna,, which we define to be the
X less than about 0.02 and has an essential singularity d§aXimum value ofv"(p)|. Figure 14 shows a linear-log plot
\—0. Sincep(x) is sharply peaked a¢=0 (see Figs. 9 and Of kmax@gainst IX. For\ less than about 0.02, we see that
10), we deduce that for low density and smal a MFM  Kmax 90€S as exi()), whereb is a constant. Therefore,
system comprises large clusters of buses that are typically @though a strict phase transition occurs only in the limit
distance¢ apart. Clearly, this can only apply if>¢; if this ~ — 0. the crossover is exponentially sharp in for small\;
is not the case, then the gap size distribution must be bimdhis may be compared with the typical large gap sjzeis-
dal as seen in Fig. 10. cussed above, which is also exponentially large . Hor
Figure 13 shows the effect an(p) of decreasingy to-  Practical purposes, the crossover may be indistinguishable
from a phase transition as is already the casenfer0.02
| | | | (see Figs. 4 and 13Note that, as mentioned previously, the

0.50 i thermodynamic and — 0 limits do not commute: for a finite
0.03\ \0-02 system the behavior at=0 is trivial (there are no passen-
0.08 gers in the systemThis means that in a large but not infinite

system, the sharp crossover will, Jass reduced, resemble a

045 1 0.07 | phase transition most strongly for some nonzero* (L),
o4 and then fade away fok<<\*. (Heuristically, we expect
> ' A*L to be of order unity.
0.40 | |
05
IV. COARSENING
035 1 ggg’,&sdagf N ] In this section we discuss the approach to the steady state

in the jamming regime. We have already seen in Fig. 3 that,
in finite systems, coarsening of bus clustérs equivalently
0.3000 01 07 03 04 o5 Y the gaps between cIu;ténsccurs for smalln and. low .bus.
) : ’ : > : : ) density. Here, by relating the model to a reaction-diffusion
process, we argue that the typical size of the large gaps in the
FIG. 13. Velocity as a function of density for the MFM in the System should eventually grow &¥? and we provide nu-
thermodynamic limit showing the effect of decreasingg is 0.5.  merical evidence for this. We also study numerically the re-
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laxation of the average particle velocityft) and find that it
decays as a power law with an exponent close-tb.

The gap size distribution in the jamming regime can be 400 |
considered as a superposition of the small gaps inside bus
clusters and the large gaps between these clusters. We define
r(t) to be the mean size of the large gaps. Recall first from 300
Sec. lll that in a mean-field approximation we expect the
probability that a particle hops into a gap of sizéo be

r(t)

200
u(r)=B+(1—B)exp(—Ar/v). (29

If \r is sufficiently large, the motion of a typical bus cluster
therefore becomes uncorrelated with the motion of the clus-
ter ahead. When two clusters come sufficiently close to- LT , , L
gether, they coalesce and form a single cluster. The larger 3000 10000 100000
r(t) becomes, the more this coalescence is diffusion domi- t
nated(i.e., correlations in the motion of clusters are reduced i, 15. Log-log plots of the average large gap sit8) for
and the more it resembles a drivet+A—A reaction-  small values ofn. Simulations had. =500 000, p=0.2, and3
diffusion proces$32] with bus clusters taking the place Af ~ =0.2. Results fon =0.01 and 0.005 were averaged over 15 inde-
particles. In the driverh+ A— A process, the characteristic pendent runs and fox=0.008, 8 runs. Att=0 the buses were
length scaldof whichr (t) is an examplggrows as2 (For  positioned at random and there were no passengers. The dashed
the A+ A— A process, the presence of a preferred directioriines (2 andt®%) are shown to guide the eye.
does not change the scaling from that of the undriven system
[31].) We therefore expect'? growth in the BRM when fitting the function(30) to the data fot>40 000. For the two
Ar(t) is sufficiently large, i.e., at sufficiently late times. larger values ofA we see that the curves collapse at late
We have performed simulations on large systeinss®  times as expected. The behavior at these late times is cer-
X 10°) to investigate the approach to the steady state. Iiainly consistent witht'2 growth. However, the results for
these simulations, inspection of the complete gap size distrix =0.005 do not fit this picture. We believe that this is be-
bution shows that, after a short time, there is a very deepause theé'/? growth regime has not yet been reached for this
minimum at a gap size of about 20; we observe a negligibleralue of\. It appears that as becomes smaller, the regime
number of gaps of this size. Therefore, in the results precharacterized by approximat€® growth increases in dura-
sented below we have defined a large gap as one with siz@®n. Our results suggest that the BRM may exhibit a cross-
greater than 20 and't) is then the mean size of gaps greaterover from power law growth of (t) with exponent=0.3 to
than 20. In discussing the coarsening in a disordered drivegrowth with exponent 1/2. We remark that the MFM exhibits
diffusive model, Krug and Ferrafi20] use the variance of similar, but not identical, coarsening behavior.
the complete gap size distribution as their measure of the We now discuss the behavior of the average velac{ty
typical length scale. We have also studied this quantity an@s the steady state is approached. We believe that the true
we find that its time evolution is entirely consistent with that steady-state velocity in the jammed regime of the BRM is
of r(t), as one would expect in a scaling regime. very close to, but slightly smaller tha,. Figure 17 shows
Figure 15 shows log-log plots oft) obtained from simu- the decay ofv(t) towards its steady-state value. The data,
lation. Close inspection of the(t) curves reveals that they although noisy, show clearly that(t) relaxes towards8
are straight lines at early times, indicating power law growth
with exponent=0.3. By early times we mean the interval
3000<t<<10 000 for the two larger values af and 10 000
<t<30 000 forA=0.005. However, at later times we see .-
different behavior as the curves become somewhat concave,
particularly for the two larger values of. N 7 0.01
Since we anticipate that’? growth will occur only after '
r(t) has become sufficiently large for bus clusters to be un-
correlated, we expect(t) to be of the form

r(t) - r,

r(t)=ro(\)+At" (30) *" A=0.005
100 b :
at late times. The constark should depend only very 3=0.008
weakly on \ if the coarsening process is truly diffusion
dominated. However;, is a measure of how far apart bus
clusters must become to be uncorrelated for a particular 10000 100000
value of A, and so we expect it to vary as1l/\ from Eq. !
(29. FIG. 16. Log-log plots ofr (t)—r, for small values ofz. The
Figure 16 shows log-log plots af(t) —r, for the same data are the same as that presented in Fig. 15. The dashetiMhe (
data presented in Fig. 15. The parametgwas estimated by is shown to guide the eye.
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10" A feature of the dual model is that the nonconserved vari-
oo, o %=0.005 able can now be thought of as being “attached” to the mov-
> = A=0.008 ing particles rather than fixed sites as in the original interpre-
tation. The nonconserved variableus, the speed of particle
i, which can either be fastu{=1) or slow (u;=2). If the
dynamics of this dual model is to be exactly the same as that
of the BRM, then a particle should attempt to hop to the left
when the site to its left is updated. However, a more natural
dynamics is to only choose particles for update. The full
update rules in the latter case are as follot$:Pick a par-
ticle i at random.(2) If wj=1 thenu;— B with probability
\. (3) If there is no particle on the site to the left of particle
i, then it hops to the left with probability; . (4) If particlei
hops, thenu;— 1. This model describes a system of particles
o each of which can exist in two states of mobility. A particle
has probability of switching to the less mobile state each
time step for which it remains stationary. When it finally
FIG. 17. Log-log plots ol (t)- 8 for small values of. Simu-  does move, it is restored to the more mobile state.
lations are the same as those for the data shown in Figs. 15 and 16. While the dual model is not identical to the BRM, we
The dashed linet('!) is shown to guide the eye. The data have have checked that the numerical behavior is indeed very
been rescaled vertically for clarity. similar. The density of particles is-1p=p’ and we note
that a gap in the BRM is equivalent to a cluster of adjacent
=0.2 as a power law with an exponent close-té. The data particles in the dual model. Thus, the mean-field theories for
for later times, although very noisy and not shown, are conthe two models are equivalent, so long as the hopping rate
sistent witht 1. We have no evidence for a crossover in theinto a gap of size« in the MFM is interpreted as the hopping
relaxation ofuv(t) [in contrast tor(t)] but, owing to the rate of a particle leaving the left edge of a cluster of side
quality of our data, neither can we rule out this possibility. the dual mean-field theory. Jamming becomdsgh density
It is interesting to note that we observe coarsening in ghenomenon here, characterized by the presence of large
system that does not strictly phase separate. We have alreadijusters of particles. This restores to the word “jamming” a
argued that for smalk the thermodynamic singularities in meaning closer to that used in everyday life.
the limit A—0 are replaced by behavior that is smooth but We define the average speed of particles asSince in
has crossovers that are exponentially sharp in Bppar- the BRM the magnitude of the bus current must be equal to
ently the A\—0 phase transition likewise shows up in the the magnitude of the hole current, we have
dynamics where the system appears to phase separate, but
only up to a finite(but very long time so that a truly inho- (

5

10
1000

mogeneous state is never reached. Our study of the MFM for v'= p )v(p)= ( 17p )v(l—p’). (31)
small\ in Sec. lll D suggests, however, that the final “ho- 1-p P

mogeneous” state comprises large clusters of buses sepa-

rated by gaps having a typical size of order expfihence The dual model can be thought of as describing stop-start
t12 growth of the typical large gap size will occur up to sometraffic flow with the particles representing cars. The longer a
time exponentially large in A/ (for a sufficiently large sys- car is at restusually because a car in front is blocking the
tem). Perhaps not surprisingly, this time scale is of the samenore likely it is that the driver will be slow to react when it
order of magnitude as our estimate of the time scale ofs possible to move again. Nowis the parameter determin-
which individual clusters are stable, derived within the two-ing the strength of the “slow-to-start” behavior of cars. This
particle approximation in Sec. Il A. is similar to several “slow-to-start” cellular automaton traf-
fic models studied recentl{33,34. In the study of traffic
flow, the so-called “fundamental diagram(the current
v'p’ as a function of density’) is commonly examined.

The above completes our study of the BRM. However, adrigure 18 shows the fundamental diagram for the dual model
mentioned in Sec. |, our motivation for studying the model is(simulation and MFM for different values oh. One can see
mainly connected with its interesting generic behaviar that for high densities an very small, the current is sig-
driven system with one conserved and one nonconservetificantly less than that fox =0. It follows from the behav-
variable rather than its applicability to public transport. In ior ash—0 that in the model, an infinitesimal probability for
this section we present an alternative interpretation of thears to become slow to start results in a macroscopically
model that further reveals its generic behavior. large decrease in the current at high density.

One can interpret the BRM in a different way by noting A different interpretation of the dual model provides a
that each time a bus hops to the right, the &itele) that the  simple picture of another familiar kind of jamming that
bus hops into moves to the left. By considering the “holes” might be called “clogging.” Consider particles suspended in
(henceforth we call therparticles to be the moving entities a fluid that is pumped along a narrow pipe. Imagine that the
in the model and the “buses” to be empty sites, one definegarticles, which are comparable in size to the pipe width
a dual model. they cannot pass each othdrave some tendency to stick to

!

V. DUAL MODEL: CLOGGING
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FIG. 18. Particle current as a function of density for dual model
for different values of\. For all simulation datal. =10 000 and @) (b)
MFM results are in the thermodynamic limit. The uppermost solid 5 19 Space-time plots of bus positions for 0.2, 3=0.5,
curve is the MFM result in the thermodynamic limit followed by andL=100. In(a) A=0.1 and in(b) A =0.02. There is 1 time step

the limit A —0. The dashed curve is the exact result wheis set  panyeen each snapshot on the time axis. The system is in the steady
equal to zero before the thermodynamic limit is taken. The latterg;4¢a

two curves are identical fos’ <0.5.

the average time a bus takes to travel from one stop to the

the walls of the pipe, but that this process takes time to occufiext (with no stopping for passengersThe parametersg
and therefore can only happen if a particle remains stationarsind\ are defined relative ta. The amount by which buses
with respect to the pipe wall for a significant time. A stuck are delayed owing to their having to pick up passengers is
particle will remain stuck if there is another such particle inreflected inB. Our choice 0f3=0.5 is, we believe, a reason-
front of it. If not, the stuck particle will detach from the wall able figure for a city bus route—a bus picking up passengers
and move on, but only after a delay. This offers an interpreat every stop will progress about half as quickly as one that
tation of the dual model in which the attachment rate of ahas no passengers to collect. We interprets the probabil-
stationary particle i and the rate at which a stuck particle jty that one or more passengers arrive at a typical bus stop in
will detach and move on ig. (The parametew is set by the  the time it takes a bus to go from one stop to another
flow rate of the fluid) In the limit A—0, a phase transition (roughly a minute, say Of course, there is no such thing as
then arises from a homogeneous phase in which the particlestypical bus stop on a city bus route but we believe that
move quickly, to a jammed phase of inhomogeneous, slowshould often lie between 0.1 and 1, depending on location,
moving particles. This transition occurs when the particletime of day, and other factors.
density is raised above-1p., wherep. was defined earlier In our examination of the BRM up to this point, we have
for the BRM. primarily studied the limit of large system size For real

More generally, such a model could be taken as a highlysus routes, however, we expdctthe number of bus stops,
simplified discrete description of any fluid that has a ten-to be in the region of 50 to 100. Figure (89 shows the
dency to clog. There are many fluids that will solidify when positions of 10 buses in a system of 100 bus stops for 200
at rest but remain in a fluid state if kept moving rapidly time steps in the steady state, with-0.1. Transient clusters
enough—examples include colloid/polymer mixtu5],  of buses are clearly visible in the system, a scenario familiar
clay gels(used as drilling muds in the oil indusirand, in to regular users of the bus route. A similar space-time plot is
some circumstances, blood. A similar description might apshown forA =0.02 in Fig. 19b). As was the case for larger
ply to particulate suspensionsay in a horizontal pipe  systems, we see a single large cluster of buses that is rela-
which, if not kept moving, will settle under gravity into a tively stable. Our model suggests, therefore, that such cata-

relatively immobile deposit. strophic clusters of buses will not form if the arrival rate of
passengers is sufficiently large, but that at some intermediate
VI. RELEVANCE TO REAL BUSES arrival rates, a given bus is quite likely to be part of a small

cluster. Of course, as the arrival rate is increased still further,

While the BRM is not designed to model a real bus routethe BRM predicts an increasingly disordered bus route with
with any great accuracy, it is worth commenting on its posittle clustering.
sible relevance to the bus route problem. To do this, we must Finally, we wish to comment on the implications of a
relate our model parameters to those of a (egalour case, “hail-and-ride” bus system, where there are no fixed bus
Scottish bus routeL is the number of stops on the circular stops and passengers may hail a bus at any point on the
route and the bus densityis the number of buses per stop. route. In the BRM, this corresponds to a system with a large
We expecip to be quite lon(perhaps 0.1 and hence to be in  number of stopglargeL) and very small values of both
the regime where jamming could potentially occur. The pa-andg. Hence, one expects the buses to cluster very strongly,
rametera, which we take to be 1, is inversely proportional to much as in Fig. Twith a much lower bus density, howeyer
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Compounding this problem, witjg very small the leading
bus in a cluster moves extremely slowly. Thus, the use of a
“hail-and-ride” system, while on the surface more conve-
nient for passengers, would have dire consequences for theg
efficiency of the bus service. However, it is worth pointing
out that on routes used by very few passengersjight be

so small that one would observe essentially 0 behavior,

i.e., a homogeneous system with buses being scarcely de-
layed. This is because the probability that a site has passen-
gers on it cannot be greater thah; if AL<<1, no bus is
significantly delayed by having to pick up passengers.

60.0 -

40.0

Mean passenger waiting t

VII. DISCUSSION

0.0
In this work we have provided strong evidence that the 0.0
BRM undergoes a jamming transition as a function of the P

densityp of buses in the limit whera, the rate of arrival of FIG. 20. Plot of the mean passenger waiting time as a function

passengers, tends to zero. This provides an example of @ pys density for two different values af The simulation param-
homogeneous system with local, stochastic dynamics thatiers ard =10 000 andg=0.5.

exhibits a jamming transition in one dimension. Although it
remains an open problem to find an exact solution of thdtself and related modelgl3—-20 of defect-mediated jam-
model, we have shown that the steady state of a mean-fielfing, for which jams arise when the vehicle density is too
approximation is solvable. This approximation captures thdow.
essence of how the ordering into jams occurs—the density of The dual model is, in our view, interesting because it
passengers at a site provides information about the time &escribes the jamming of particles whose mobility depends
which a bus last visited the bus stop. From the elapsed timen an internal dynamical degree of freedom. This is repre-
it is inferred how far away the next bus is along the route.sented by the nonconserved variaipde In the dual model
Thus the passengers mediate an effective long range interai¢self, the nonconserved variable keeps an internal record of
tion between the buses. The nature of the mean-field agiow long it is since the particle last moved. More generally
proximation is to replace this “induced” interactidwhich ~ however, other models of this type could entail a noncon-
is subject to stochastic variatipwith a deterministic one.  served internal variable representing, say, the orientation of
The transition also has strong analogies with the jammingodlike particles(Such particles would be much more likely
transition induced by a single defect particle or disofd&-  to jam in some orientations than othgnd/e have shown that
20]. In that case it has been shown that the transition i¢he existence of an additional, nonconserved degree of free-
reminiscent of Bose condensatifif]. In the present model dom is, at least in a specified limik(~0), enough to cause
an interesting point is that there is no defect bus present; all symmetry-breaking phase transition to a jammed state, in a
buses are equal. Instead, the system spontaneously selectsanogeneous one-dimensional driven system.
bus behind which a jam forms and the waiting passengers We now comment on our results for nonzeroAlthough
condense in front of this bus. As mentioned in Sec. I, itwe argue that a transition only occurs ms-0, we have
would make very little difference if overtaking of buses wereshown that a strong vestige of the transition remains for
allowed in the model, since its effect would be merely tosmall values ofx. In fact, in the mean-field theory of the
interchange the leading two buses of a jam. The new leadinBRM, the crossover between the two regimes becomes ex-
bus would then proceed as slowly as its predecessor. Thigonentially sharp in N. Therefore, in practice the crossover
makes the physics different from the defect mediated caskecomes very difficult to distinguish from a strict thermody-
where unhindered overtaking would prevent a jam from evenamic transition when 1/ is of order 100 or more. The
arising. We have shown, at least in the two body approximaix — 0 transition also strongly influences tldgnamicalbe-
tion of Sec. Il A, that the time for the lead bus to escape fromhavior of the system wheR is small but nonzero: we ob-
its jam diverges strongly with system size. This may be comserved coarsening behavi(presumably transients would
pared with the “flip time” in another model exhibiting spon- usually be associated with systems that do strictly phase
taneous symmetry breakifd]. separate. All this highlights the fact that care is required to
The bus route model has an interesting dual model, deunambiguously identify phase transitions, as opposed to
scribed in Sec. V. This considers the spaces between busesdmssover phenomena. Indeed, it is possible that closely re-
be moving entities. If the moving entities are interpreted adated crossover phenomena occur in cellular automata mod-
cars, the dual model is a particular type of slow-to-start traf-els of traffic[36,37.
fic model [33,34]. If the moving entities are particles sus-  Finally, we show in Fig. 20 the average time that a pas-
pended in a fluid, the dual model is a model of “clogging” senger is required to wait for a bus. The system size is
in the transport of sticky particles, or a gelling fluid, down a 10 000, unphysical in terms of real bus routes but represen-
pipe. In either interpretation, there(is the limit of small\) tative of the thermodynamic limit. Fot=0.1, we see that,
a phase transition between a homogeneous and an inhomas one would expect, the average waiting time increases
geneous phase; however, the inhomogeneGammed smoothly as the density of buses is reduced. However, for
phase now arises at high density. This contrasts to the BRM =0.02, it increases very sharply at an intermediate value of
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the density, and for low densities, the bus service becomes 1
highly inefficient. This figure serves as yet another cruel re- W(C—C) = 37 u(Xw) (A4)
minder of the vagaries of the bus route to those whose lives
are unfettered by the ownership of a motor car. and the LHS of Eq(A1) becomes
1
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APPENDIX: STEADY STATE SOLUTION 2 u(x)P(C) H(Xk):; u(x;+1)P(G) B(x;-1).
OF MEAN-FIELD MODEL (A6)

The MFM comprisesv particles hopping ona 1D ring of - gjnce periodic boundary conditions apply, the indices on the
L lattice sites. The probability of hopping into a gap of size| 4s and RHS of Eq(A6) can be matched up to give
X is u(x) which must obeyu(0)=0 (hard-core exclusion

The update is random sequential so that the probability of a

given particle being updated at each step & 1/ > u(xj-1)P(C) g(xj_l)zz u(x;+1)P(C)) 6(X;_1).
A configurationC is completely specified by a sequence | j
of gap sizegx;} wherex; is the size of the gap in front of the (A7)
ith particle. . .
In the steady state, the master equation for the system i?Ne;rSvrSitoeI ve this equation, we assume a product formFor
! ! ! 1
2 W(C—C)P(C)= 2 W(C'—OP(C’), (Al) P({x}H= mq(xl)- —q(xi)---q(xm), (A8)
c'#C c'+C ’

whereP(() is the steady state probability of configuratién whereZ(L,M) is a normalization. Substituting this product
andW(C—C") is the probability of an elementary transition form into Eq.(A7) gives
fromCtoC'.
First, consider the right-hand sidRHS) of Eq. (Al). _ _ _
Define C={xy, ... X, ... Xy} and Cj={Xq,...Xj_1 2 (H q(xl)) 0(x;-A=0, (A9)
—1x;+1,... Xu}. Then the only configurations from
which C can be obtained by an elementary transition are thavhere
Cj, with the constraint that; ,>0. We therefore have

u(x;+1)q(x-1—1)q(x;+1)

A =u(X;_1)— . (A10)
1 ] -1 ) )
W(C—0)= 7 ux+1) (A2) a(x;-1)a0x)
To solve this forq(x;), make the ansatz that
and the RHS of Eq(Al) becomes
a(Xj-1) q(x;+1)
1 U(Xi 1)q(X' -1 ZU(Xj_l—l)W (A11)
M; u(xj+1)P(C) 6(X; 1), (A3) -1 j
for xj_1>0. This has the solution
where 6(x) is the usual Heavisidéstep function. «
Now consider the LHS of Eq.(Al). Define Cy _ 1
={Xq, ... X1 +1x—1,... xu}. The C; are the only Q(X)_yﬂl u(y)’ (A12)

configurations that can be obtained fréhiby an elementary
transition, with the constraint that>0. Therefore we have which, together with Eq(A8), givesP({x;}) as required.

[1] B. Schmittmann and R. K. P. Zi&tatistical Mechanics of  [6] M. R. Evans, D. P. Foster, C. Godtee, and D. Mukamel,

Driven Diffusive System&/ol. 17, edited by C. Domb and J. Phys. Rev. Lett74, 208 (1995.

L. Lebowitz (Academic Press, London, 1995 [7] C. Godrehe, J.-M. Luck, M. R. Evans, D. Mukamel, S. San-
[2] K. Nagel, Phys. Rev. B3, 4655(1996. dow, and E. R. Speer, J. Phys.28, 6039(1995.
[3] T. Halpin-Healy and Y.-C. Zhang, Phys. R&n4, 215(1995. [8] P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys3A L45
[4] R. Lahiri and S. Ramaswamy, Phys. Rev. Let8, 1150 (1998.

(1999. [9] M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel,

[5] P. Gacs, J. Comput. Sys. S8R, 15 (1986. Phys. Rev. Lett80, 425(1998.



1418 0. J. OLOAN, M. R. EVANS, AND M. E. CATES PRE 58

[10] J. Krug, Phys. Rev. Let67, 1882(1991). [26] P. Bialas, Z. Burda, and D. Johnston, Nucl. Physt98, 505
[11] U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phys. (1997.
Rev. Lett.76, 2746(1996; Phys. Rev. 57, 4997(1998. [27] J.-M. Drouffe, C. Godrehe, and F. Camia, J. Phys.34, L19
[12] J. Kertesz and D. E. Wolf, Phys. Rev. Le$2, 2571(1989. (1998.
[13] S. A. Janowsky and J. L. Lebowitz, Phys. Rev.4A, 618 [28] H. Kramers, PhysicéAmsterdam 7, 284 (1940.
(1992. [29] F. Spitzer, Adv. Math5, 246 (1970.
[14] G. Schitz, J. Stat. Phys71, 471(1993. [30] E. D. Andjel, Ann. Prob10, 525(1982.
[15] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer,[31] V. Privman, A. M. R. Cadilhe, and M. L. Glasser, J. Stat. Phys.
Europhys. Lett22, 651(1993; J. Stat. Phys73, 813(1993. 81, 881(1995.
[16] K. Mallick, J. Phys. A29, 5375(1996. [32] For a review see D. ben-Avraham, Nonequilibrium Statisti-
[17] B. Derrida, inStatphys19edited by B.-L. HadWorld Scien- cal Mechanics in One Dimensipadited by V. PrivmariCam-
tific, Singapore, 1996 bridge University Press, Cambridge, 1997
[18] Z. Toroczkai and R. K. P. Zia, J. Stat. Phs, 545 (1997). [33] S. C. Benjamin, N. F. Johnson, and P. M. Hui, J. PhyR9A
[19] M. R. Evans, Europhys. LetB6, 13 (1996; J. Phys. A30, 3119(1996.
5669(1997). [34] A. Schadschneider and M. Schreckenberg, Ann. Phys.
[20] J. Krug and P. A. Ferrari, J. Phys. 29, L213 (1996. (Leipzig) 6, 541(1997.
[21] E. Ben-Naim and P. L. Krapivsky, Phys. Rev. 35, 6680 [35] W. C. K. Poon, A. D. Pirie, M. D. Haw, and P. N. Pusey,
(1997. Physica A235 110(1997.
[22] A. J. Bray, Adv. Phys43, 357 (1994. [36] B. Eisenblder, L. Santen, A. Schadschneider, and M.
[23] E. Ben-Naim, P. L. Krapivksy, and S. Redner, Phys. Rev. E Schreckenberg, Phys. Rev.52, 1309(1998.
50, 822(1994. [37] M. Sasvai and J. Kertez, Phys. Rev. 56, 4104(1997.
[24] T. Nagatani, Phys. Rev. &1, 922 (1995. [38] O. J. O'Loan, M. R. Evans, and M. E. Cates, Europhys. Lett.

[25] F. Ritort, Phys. Rev. Let{r5, 1190(1995. 42, 137(1998.



