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Jamming transition in a homogeneous one-dimensional system: The bus route model

O. J. O’Loan, M. R. Evans, and M. E. Cates
Department of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

~Received 19 December 1997!

We present a driven diffusive model that we call the bus route model. The model is defined on a one-
dimensional lattice, with each lattice site having two binary variables, one of which is conserved~‘‘buses’’!
and one of which is nonconserved~‘‘passengers’’!. The buses are driven in a preferred direction and are
slowed down by the presence of passengers who arrive with ratel. We study the model by simulation,
heuristic argument, and a mean-field theory. All these approaches provide strong evidence of a transition
between an inhomogeneous ‘‘jammed’’ phase~where the buses bunch together! and a homogeneous phase as
the bus density is increased. However, we argue that a strict phase transition is present only in the limitl
→0. For smalll, we argue that the transition is replaced by an abrupt crossover that is exponentially sharp in
1/l. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation
of the model is given in which the spaces between buses and the buses themselves are interchanged. This
describes a system of particles whose mobility decreases the longer they have been stationary and could
provide a model for, say, the flow of a gelling or sticky material along a pipe.@S1063-651X~98!01808-X#

PACS number~s!: 05.70.Ln, 64.60.2i, 89.40.1k
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I. INTRODUCTION AND MODEL

Driven diffusive systems@1# have recently attracted muc
attention in the field of nonequilibrium statistical mechan
from a fundamental viewpoint, as well as in the context
traffic modeling@2#, interface growth@3#, and other applica-
tions @4#.

One particularly interesting feature is the possibility
phase ordering and phase transitions in one-dimensi
~1D! systems. To appreciate the significance, one should
call that in 1D equilibrium models, ordering only occurs e
ther in the limit of zero temperature~e.g., kinetic Ising mod-
els or deterministic Ginsburg-Landau equation! or in mean-
field-like models. However, in nonequilibrium systems it h
been demonstrated that ordering may occur in models w
fully stochastic, local dynamics@5–7#.

The nonequilibrium transitions found so far appear to
of three main types~although very recently, novel phas
separation phenomena have been demonstrated in som
systems@8,9#!. First there are boundary induced transitio
@10,6#. These occur on open systems with a dynamics
conserves some quantity in the bulk, but that allows inject
and extraction of the quantity at the boundaries. A sec
class of transition, describing roughening of a 1D interfa
is connected to directed percolation and corresponds
driven diffusive system with nonconserved order parame
@11,12#. Finally, there are transitions induced by defect si
@13,14# or particles@15–18# or the presence of disorder@19–
21#. In this class of systems, the presence of the de
causes a macroscopic region of high density to form. Ana
gies with Bose-Einstein condensation@19# and liquid-gas
phase coexistence@17# have been made. An even simpl
way to view the phenomenon is as a jamming transition;
defect causes a traffic jam to form behind it. In this conte
however, ‘‘jamming’’ may be a somewhat misleading ter
since in the models just described the inhomogene
‘‘jammed’’ phase arises atlow density. The transition is in
fact between this phase, and a higher density ‘‘congest
PRE 581063-651X/98/58~2!/1404~15!/$15.00
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phase, which is uniform, but which has a mean particle
locity lower than that of the jammed phase. Indeed, it a
pears that a minimum velocity principle applies@19#, so that
the stable phase is always the slowest available at a g
mean density.

In this work we address the question of whether simi
‘‘jamming’’ transitions can occur in 1D homogeneous sy
tems, i.e., systems with periodic boundary conditions a
without disorder or defects. We introduce a model that
hibits a jamming transition in a certain limit~to be specified
below!. For the moment, it is useful to describe the model
terms of a commonly experienced and universally irritati
situation. Consider buses moving between bus stops alo
bus route. Clearly, the ideal situation is that the buses
evenly distributed along the route so that each bus picks
roughly the same number of passengers. However, owin
some fluctuation, it may happen that a bus is delayed and
gap to the bus in front of it becomes large. Then, the ti
elapsed since the bus stops in front of the delayed bus h
been visited by the previous bus is larger than usual
consequently more passengers will be waiting at these
stops. Therefore the bus becomes delayed even further
the same time, the buses behind catch up with the dela
bus and pick up only very few passengers since the dela
bus takes them all. Hence a ‘‘jam’’ of buses forms. Inspir
by this scenario we shall formulate a model below, to
referred to as the bus route model~BRM!.

We defer the mathematical definition of the BRM un
after we have discussed the general context. Already, f
the simple picture discussed in the previous paragraph,
can identify a conserved variable~the buses! and a noncon-
served variable~the passengers!. The passengers are nonco
served since they arrive at the bus stops from outside
system~bus route!. The conserved buses are driven in a p
ferred direction. We may usefully think of the nonconserv
variable coupling to the conserved variable and mediat
the jamming transition.

Associated with any ordering dynamics is the pheno
1404 © 1998 The American Physical Society
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enon of coarsening@22# where the typical domain length o
the ordered phase grows indefinitely with time. Inde
coarsening has been studied in ballistic aggregation mo
@23# and disordered driven diffusive systems where jamm
occurs@20,24#. Again, a contrast can be made with 1D eq
librium models where only zero temperature models
mean-field-like models coarsen. In the present model, i
the gaps between the jams that coarsen as the jams a
gate; we study this phenomenon in the present work.

In a finite system, the coarsening eventually results in
large jam with a single gap in front of it. Recalling that th
model system is homogeneous and that no bus is prefe
over any other, we see that we have a spontaneous symm
breaking where the symmetry between buses is bro
through one bus being selected to head the jam. Symm
breaking transitions have been previously found in 1D op
systems with a nonconserved variable at the boundaries@6,7#
and in a class of growth models@11#. The present mode
provides an example in a homogeneous system with a
served variable. Related symmetry breaking has also b
noted in some models in a class of ‘‘backgammon’’
‘‘balls in boxes’’ models that are effectively simple gene
alizations of Bose systems@25–27#. However, in these mod
els the dynamics is inherently equilibrium and mean-fie
like whereas the BRM has local dynamics that does
satisfy detailed balance. We shall elucidate the connec
between the two classes of models by showing that a m
field approximation to the BRM results in a model that m
be solved analytically. The steady state of this soluble me
field model falls into the class of generalized Bose syste

We now formally define the BRM@38#. The model is
defined on a 1D lattice with periodic boundary condition
Each lattice site is labeled by a numberi running from 1 to
L. Site i has two binary variablest i andf i associated with
it. These variables can be described in the following term
~i! If site i is occupied by a bus thent i51; otherwiset i
50. ~ii ! If site i has passengers on it thenf i51; otherwise
f i50. Each site can be thought of as a bus stop on a
route. A site cannot have botht i5f i51 ~i.e., it cannot have
a busand passengers!.

There areM buses andL sites in the system and the bu
density

r5M /L ~1!

is a conserved quantity. However, the total number of s
with passengers isnot conserved. The update rules for th
system are as follows:~1! Pick a sitei at random.~2! If t i
50 andf i50 thenf i→1 with probabilityl. ~3! If t i51
andt i 1150, define a hopping ratem as follows:~i! m5a if
f i 1150; ~ii ! m5b if f i 1151, and updatet i→0, t i 11
→1 andf i 11→0 with probabilitym.

Thus,a is the hopping rate of a bus onto a site with
passengers andb is the hopping rate onto a site with passe
gers. The probability that a passenger arrives at an empty
is l. When a bus hops onto a site with passengers, it remo
the passengers. While we have taken the passenger var
f i to be binary, this does not forbid the presence of m
than one passenger at a site; we merely require that the
passengers have no further effect on the dynamics. We
erally takeb,a, reflecting the fact that buses are slow
,
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down by having to pick up passengers. We may seta equal
to 1 without loss of generality and from now on we consid
only this case. We note that the dynamics is local and d
not satisfy detailed balance. The model is illustrated sc
matically in Fig. 1.

Although the language of ‘‘buses’’ and ‘‘passengers
provides an appealing mental picture, the model is inten
to be simple rather than realistic. For example, the need
buses to stop to allow passengers to disembark is igno
Note, however, that an ability for buses to overtake ea
other would have almost no effect. This is because, in
jammed situation of the type discussed below, the int
change of a fast-moving bus with a slower moving one
front also interchanges their velocities.

The main purpose of this paper is to provide evidence t
the model defined above undergoes a jamming transit
However, we argue that a strict transition~i.e., a singularity
in some measured quantity! only occurs asl→0 and in the
thermodynamic limit. Here we define the thermodynam
limit as

M ,L→`

with r held fixed. ~2!

Our evidence is both numerical and analytical. In Sec
we present Monte Carlo simulations that provide eviden
for the above picture. In the following sections we provi
various analyses to support the picture. In particular, in S
II A we present a simple two-particle approximation that d
scribes the stability of jams. In Sec. III we define a mea
field approximation. Within this approximation we can sol
analytically for the steady state and find it is similar to
generalized ideal Bose gas or backgammon model. T
steady state can be analyzed and exhibits a phase trans
~taking the form of a condensation transition! only asl→0
in the thermodynamic limit. We show that the mean-fie
steady state agrees quantitatively with Monte Carlo simu
tions of the BRM, suggesting that for the BRM also there
no strict transition for nonzerol. We also study numerically
the behavior asl→0 in the mean-field approximation.

In Sec. IV we study the approach to the steady state in
jammed phase where we observe coarsening of bus clus
We argue that on an infinite system the size of the large g
between clusters should eventually grow ast1/2. We study
finite systems numerically. In Sec. V we discuss an interp
tation of the BRM wherein we consider the vacant sitesbe-
tweenbuses to be the moving entities in the system. View
this way, the nonconserved variable now describes an in
nal degree of freedom of the moving entities themselv
rather than of the sites they visit. We discuss possible ph
cal interpretations of this dynamics, including a model
clogging. In Sec. VI, we consider the relevance of the BR
to real bus routes and in Sec. VII, we conclude with a d
cussion of the main points of our work.

FIG. 1. Schematic illustration of the BRM.
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1406 PRE 58O. J. O’LOAN, M. R. EVANS, AND M. E. CATES
II. SIMULATION RESULTS AND HEURISTIC
ARGUMENTS

The model defined above captures an important featur
the bus route problem described in the Introduction, nam
that once a gap between buses becomes large through
fluctuation, the tendency is for the gap to become still larg
since buses move more quickly in areas with few passeng
a bus that is following closely behind another will tend
move faster than one that is a long way behind the bus
rectly in front. This is simply because the closer a bus is
the one directly ahead of it, the less time passengers
have had to arrive. If this tendency for large gaps to gr
were to prevail, the result on a finite system would be
single jam of buses and one large gap. We first argue tha
the limit of l→0 but lL→` this scenario can only hold a
low enough density of buses, and that a phase transition
homogeneous phase will result as the density is raised.

First consider a system comprising a single large jam
order for this to be a stable object, the velocity~defined as
the average rate of hopping forward! of the leading bus mus
be equal to the velocity of any bus inside the jam. Now
lL→`, the probability that the site immediately in front o
the leading bus has a passenger on it tends to one.~This is
because the rate of passenger arrival, multiplied by the t
delay between the final bus of the jam and the leading bu
the jam crossing the same site, is of orderlL.! Therefore the
velocity of the leading bus will approachb. On the other
hand, if l→0 the probability that a site within the jam ha
passengers tends to zero since these gaps are of finite le
Therefore, since the velocity of a bus in the jam will only
limited by the presence of neighboring buses, this veloc
will be 12r jam wherer jam is the density of buseswithin the
jam. ~This follows from the fact that, whenl→0 with lL
→`, the situation is equivalent to a model of hopping p
ticles with a single slow ‘‘defect’’ particle@19#.! Equating
the two velocities yieldsr jam512b. However, the jam mus
clearly have density greater thanr, the overall density of the
system. Thus for jamming to occur we require

r,rc where rc5r jam512b. ~3!

For densities above this critical value, the system will be i
congested phase where gaps between buses are uniform

An equivalent way of obtaining Eq.~3! is to compare the
velocity in the jammed phase,b, and the velocity in the
homogeneous phase, 12r. The phase with the lowest veloc
ity is chosen by the system. This procedure is analogou
the thermodynamic procedure of choosing the phase with
lowest chemical potential. Though unproven for the pres
problem, in the case of disordered exclusion processes
analogy has been shown to be exact@19#.

We now present simulations that, for smalll, qualita-
tively support the above picture of a phase transition. Fig
2 shows a space-time plot of the buses in the systemr
50.55 for small l (l50.02). The buses are distribute
fairly homogeneously throughout space. There are no v
large gaps present in the system. Figure 3 shows a sp
time plot forr50.2, which is less thanrc of Eq. ~3!. In this
case, starting from a random configuration of buses, la
gaps quickly open up and small clusters or ‘‘jams’’ of bus
are readily seen. Gradually, these small jams coarsen u
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finally, the system comprises a single large jam. There is
large interbus gap in front of the jam whereas the jam its
contains many small gaps. The behavior can be thought o
phase separation into regions of nonzero and zero dens

In order to investigate the effect of varyingl, we plot in
Fig. 4 the steady state average velocityv as a function of the
density. A system sizeL510 000 was chosen since using
bigger system did not appreciably affect the results. Let
first consider the results forb50.5. Forl50.1, the velocity
increases smoothly as the density is decreased and appe
approachb for small density. There is no sign of a pha

FIG. 2. Space-time plot of bus positions forl50.02,r50.55,
b50.5, andL5500. There are 10 time steps between each snap
on the time axis. Initially the buses are positioned randomly a
there are no passengers.

FIG. 3. Space-time plot of bus positions for the same parame
as in Fig. 2 except that here,r50.2.
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PRE 58 1407JAMMING TRANSITION IN A HOMOGENEOUS ONE- . . .
transition. Forl50.05 a similar picture holds although no
the curvev(r) is more concave.

A strikingly different picture is obtained forl50.02.
There is an apparent discontinuity in the derivative ofv(r)
at some value of the densityr* .0.45. Belowr* , the data
are consistent withv5b whereas abover* , v decreases
almost linearly with increasing density. This behavior is co
sistent with the simple picture of a jamming transition d
cussed above. It is also very similar to the velocity-dens
relationship in an exactly solvable model with a single sl
particle @19,20# where a jamming transition occurs. Th
graph therefore suggests that a phase transition may o
for small l. We argue, however, that the phase transit
occurs only in the limitl→0 and that this limit has to be
taken in an appropriate way. In order to quantify this we n
analyze a simple two-particle approximation to the full sy
tem.

A. Two-particle approximation

Consider a system containingM buses. Let us assume th
there is a jam in the system@i.e., a gap with sizeO(L)#. If
there is a jamming transition then such a gap should bec
stable in the thermodynamic limit; the bus at the head of
jam should not be able to escape into the large gap. Le
consider the two busesA andB at the head of such a jam a
shown in Fig. 5. The gap in front ofA has sizekL2x where
k is independent ofL. The gap in front ofB has sizex. We
now assume that we can write the hop rate of either bus
function only of the gap size in front of that bus. To do th
we write u(x)5 f (x)1b@12 f (x)# where f (x) is the prob-
ability that there are no passengers on the first site of a ga
sizex. To estimatef (x) we assume that busA is a random

FIG. 4. Velocity as a function of density for various values ofl
andb. The simulations were performed withL510 000. The lines
are shown to guide the eye.

FIG. 5. The two buses at the head of a jam in a system of sizL.
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walker hopping with ratev, wherev is the average velocity
of the system. Then the average time sinceA left the site in
front of B is x/v. Since the rate of arrival of passengers isl
we then havef (x)5exp(2lx/v) and

u~x!5b1~12b!exp~2lx/v ! for x.0,
~4!

u~0!50.

The use of expression~4! for the hopping rates is in the spir
of a mean-field approximation. We have found by simulati
that the approximation is a good one forb larger than about
0.2, but for smallb it breaks down. In particular, for smalll
~whenb is small! we find thatu(x) decays tob much more
rapidly than Eq.~4! predicts. We believe that the reason f
this is the failure of Eq.~4! to take into account time corre
lations in the hopping of buses—when a bus is updated
fails to hop into an unoccupied site, the next time it is u
dated it should hop with probabilityb andnot u(x) ~because
for a bus to fail to hop, the site aheadmustcontain passen-
gers; this is no longer true foraÞ1, but time correlations
will still be present!. Clearly, the effects of neglecting thes
time correlations will be largest for smallb. We shall return
to Eq.~4! in Sec. III where we carry out a conventional me
field theory for the many-particle problem. For our prese
purposes, we replacev by b in Eq. ~4! since we are inter-
ested in a jammed situation~i.e., we assume that busA al-
ways has passengers to pick up!.

Using the mean-field hopping rateu(x) we may write a
Langevin equation for the dynamics of the gap size:

ẋ5u~kL2x!2u~x!1h~ t !, ~5!

whereh(t) is a noise term~say white noise of unit variance!.
@The variance of the noise should strictly depend onb but,
since we are primarily interested in the effect of~small! l on
the dynamics of the gap, we ignore this dependence.# This
can be written in the form

ẋ52
d

dx
F~x!1h~ t !, ~6!

where

F~x!52
b~12b!

l
@e2l~kL2x!/b1e2lx/b#. ~7!

The gap sizex has the dynamics of a particle undergoin
diffusion in a potentialF(x) for x.0. There is a reflecting
boundary atx50 and the potential has a maximum atx*
5kL/2. Therefore forx,x* the particle is trapped in a wel
(0,x,x* ) and bound to the reflecting boundary, i.e.,A is
bound to the head of the jam. Ifx.x* , the particle has
escaped from the well andA is no longer at the head of th
jam. The well depthDF5F(x* )2F(0) is given by

DF5
b~12b!

l
@12e2lkL/2b#2. ~8!

When the thermodynamic limitL→` is taken,DF→b(1
2b)/l, which is finite forl.0, indicating that the jam is
unstable. However, when the limitl→0 is now taken,DF
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1408 PRE 58O. J. O’LOAN, M. R. EVANS, AND M. E. CATES
diverges and particleA becomes bound to particleB—in this
limit the jam is a stable object. This simple analysis sugge
that there is a phase transition~between a jammed and
homogeneous phase as the density is raised! only in the limit
l→0. For smalll, the time scale associated with the detac
ment of particleA from the head of the jam is, to a firs
approximation@28#, given for largeL by

t;L2exp~DF!5L2expFb~12b!

l G . ~9!

The prefactorL2 reflects the facts that the well width de
pends linearly onL and that, for nonzerol, particleA es-
capes diffusively. Whenl is small but nonzero,t is expo-
nentially large in 1/l and it can appear that a jam is stab
when in fact it is not.

It is clear that the limitsl→0 andL→` do not commute
since asl→0 on a finite system one recovers a model wh
all hopping rates are the same. Such a model of hopp
particles with hard core exclusion~known as an asymmetri
exclusion process! has been well studied and exhibits n
phase transition with periodic boundary conditions@1#. In
practice, one could take the limitL→` and thenl→0 by
choosing

l;L2g with g,1 ~10!

and taking the thermodynamic limitL→` whereupon the
escape time diverges exponentially in the system size:

t;L2exp~aLg! ~11!

and the jam is a stable object.
In order to test this picture against simulations, we plot

Fig. 6 a space-time plot forb50.1 andl50.02 for a low
density. At first glance, it appears that jamming just like th

FIG. 6. Space-time plot of bus positions forl50.02, r50.2,
b50.1, andL5500. There are 20 time steps between each snap
on the time axis. Initially the buses are positioned randomly a
there are no passengers.
ts

-

e
g

t

seen forb50.5 is taking place. However, closer inspectio
of the individual jams shows that they can develop lar
gaps and, in some cases, divide into smaller jams. The ste
state for this system is therefore not characterized by a si
large jam~as appeared to be the case from simulations
b50.5), but comprises a number of jams of varying size

Figure 7 shows a space-time plot for the same value ob
(0.1) but forl50.002, a factor of 10 smaller. It appears th
the jamming has been restored—the individual jams are
seen to break up. It is also interesting to note that splitting
jams is not observed forb50.5 ~Fig. 3! so the splitting in
Fig. 6 is a direct consequence of having a smaller value ob.
Figure 4 also showsv(r) for l50.02 andb50.1. Unlike
the caseb50.5, v(r) is a smooth function with apparentl
no discontinuity in its derivative. This is consistent with th
observation that the jammed state is unstable on the t
scale of the simulation~see Fig. 6!.

We therefore conclude from our two-particle argume
that although the simulation data are indicative of the pr
ence of a phase transition, it cannot be taken as firm evide
that a strict transition occurs for any nonzerol. However,
for small l something closely approaching a transition
seen.

III. MEAN-FIELD MODEL

In this section we discuss a mean-field theory that
believe describes the behavior of the BRM very well. Mo
vated by the mean-field probability~4! of hopping into a gap
of a given size, derived in Sec. II A, we approximate t
BRM by a model that is exactly solvable in the steady sta
We term this new model themean-field model~MFM!. We
analyze this MFM and show that it compares quantitativ
well with the BRM and, importantly, that it does not have
phase transition forl.0. However, we find that there is
transition in the MFM in the limitl→0 so long as the ther
modynamic limit is taken first. This supports our view th

ot
d

FIG. 7. Space-time plot of bus positions for the same parame
as in Fig. 6 except that here,l50.002.
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the same applies in the BRM itself.
We define the MFM to be a hopping particle model~gen-

eralized asymmetric exclusion process@1#! with the hopping
probability of thei th particle beingu(xi), a function ofxi ,
the size of the gap in front of that particle. As in the BRM
we considerM particles andL sites in total, and periodic
boundary conditions apply. The hopping probabilitiesu(x)
are given by the mean-field expression~4!. Note thatu(x)
depends onv, which is the steady state mean velocity of t
system,̂ u&. It is useful to think ofv in Eq. ~4! as an adjust-
able parameter in the MFM to be determined se
consistently; i.e.,v is chosen~for fixed r, b, andl) so that
^u&5v.

While u(x) is given by Eq.~4! for the MFM, it is conve-
nient to first consider a more generalu(x), with the only
constraints beingu(0)50 ~exclusion! and u(x)→b1 as x
→`. When one considers the dynamics of the gaps betw
particles, it is evident that such a model is an example
what is known in the mathematical literature as a zero-ra
process@29,30#, which is exactly soluble~in the steady
state!. We present the solution in detail in the Appendix a
quote the result here. Each configuration can be uniqu
identified by a set of gap sizes$xi%5$x1 ,x2 , . . . ,xM%. The
steady-state probability of a configuration$xi% is

P~$xi%!5
1

Z~L,M !
q~x1!q~x2!•••q~xM !, ~12!

where

q~x!5 )
y51

x
1

u~y!
~13!

and

Z~L,M !5 (
x1 ,x2 , . . . ,xM

q~x1!•••q~xM !dx11•••1xM ,L2M .

~14!

Z(L,M ) can be viewed as the partition function of a gen
alized noninteracting system of Bose particles. We foll
Bialas, Burda, and Johnston@26# in the consequent analysis
starting from the expression forZ(L,M ). We first discuss the
behavior for generalu(x) in the thermodynamic limit and
state the conditions thatu(x) must satisfy in order for a
phase transition to occur. Turning to the specific case of
MFM, we show that there is a phase transition in the lim
l→0. We describe a method for analyzing finite syste
and we compare the MFM with simulation results for t
BRM. Finally, we discuss the behavior for small, but no
zero,l.

A. Mean-field model in the thermodynamic limit

Using the integral representation of the Kronecker del

dm,n5 R ds

2p i

sm

sn11

we write Z(L,M ), defined in Eq.~14!, as
-

en
f
e

ly

-

e
t
s

-

Z~r,M !5 R ds

2p isF F~s!

s1/r21GM

, ~15!

wherer5M /L and we have defined the generating functi

F~s!5 (
x50

`

q~x!sx. ~16!

The integral~15! is calculated in the thermodynamic lim
@defined in Eq.~2!# using the saddle point method. It can b
shown that the saddle point, wheres5z, is given through the
expression

1

r
215zg~z!, ~17!

where

g~z!5
F8~z!

F~z!
. ~18!

We may identifyz as the fugacity. Each value of the fugaci
gives a particular value of the density. The partition functi
becomes

Z~r,M !;exp$M lnF~z!2~L2M !ln~z!% ~19!

with z for a particularr determined by solving Eq.~17!.
To obtain quantitative results from this solution, it is us

ful to obtain an expression forp(x), the steady state prob
ability that a given particle has a gap of sizex in front of it.
For anyL andM , p(x) is given by

p~x!5
q~x!

Z~L,M ! (
x2 , . . . ,xM

q~x2!•••q~xM !dx21•••1xM ,L2M2x

5q~x!
Z~L2x21,M21!

Z~L,M !
. ~20!

This can be determined for a finite gap sizex in the thermo-
dynamic limit using the saddle-point expression forZ(L,M )
given in Eq.~19!. We obtain

p~x!5
q~x!zx

F~z!
. ~21!

This expression is in terms ofz but r may be found using
Eq. ~17!.

The mean particle velocityv in the steady state is

v5^u&5 (
x51

`

u~x!p~x!. ~22!

Substituting Eq.~21! into Eq. ~22! gives the result thatv
5z. This is a relationship that has been found before in t
kind of system@19#. We show below thatz is constrained to
be no greater thanb and hence, there is an upper limit on th
velocity. This constraint onz combined with Eq.~21! im-
plies that in the thermodynamic limit,p(x) is a monotoni-
cally decreasing function ofx and behaves for largex as
p(x)}(z/b)x.
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We now examine the criteria thatu(x) must satisfy for a
phase transition to occur. This entails analysis of the ge
ating functionF(z) defined by Eq.~16!. F(z) converges for
z,b and diverges forz.b @since we haveu(x)→b1 as
x→`#. Now, g(z50)50, which corresponds tor51. Ob-
serve thatg(z) is a monotonically increasing function for
<z<b, which means thatr decreases monotonically from
to 1/@11bg(b)# for z in this range. It is clear then tha
g(b), if finite, will give a critical density,rc , via Eq. ~17!.
Indeed, Bialas, Burda, and Johnston@26# show that in this
case there is a transition from a high density ‘‘congeste
phase to an inhomogeneous ‘‘jammed’’ phase forr,rc
where a single gap will occupy a finite fraction of the sites
the system. The critical density is given by

rc5 lim
z→b2

1

11zg~z!
. ~23!

For a transition to occur at nonzero density, we must h
g(z) @and hence bothF(z) and F8(z)# convergent asz
→b2.

For convenience, we writeu(x)5b@11z(x)#. By con-
sidering the asymptotic behavior of the productq(x) in the
largex limit, one finds that a phase transition occurs~i.e., rc
is nonzero! if and only if z(x) decays to zero more slowl
than 2/x asx→`. For the MFM, whereu(x) is given by Eq.
~4!, we havez(x);exp(2lx) and we immediately see tha
there is no transition forl.0. We now show that, in con
trast, in the limitl→01, a transition does occur.

For the MFM,F(z) is given by

F~z!5 (
x50

` S z

b D x

)
y51

x
1

11z~y!
, ~24!

wherez(x)5(1/b21)exp(2lx/v). To show that a transition
occurs in the limitl→01, we must show that

lim
z→b2

lim
l→01

F~z! and lim
z→b2

lim
l→01

F8~z! ~25!

both converge and also that

lim
z→b1

lim
l→01

F~z!5 lim
z→b1

lim
l→01

F8~z!5`. ~26!

Since forl.0 bothF(z) andF8(z) diverge whenz>b, the
requirement~26! is satisfied trivially. Note that if the limit
l→0 is takenbeforethe thermodynamic limit, values of th
fugacity greater thanb are permitted and we recover a mod
where all particles hop with probability 1.

We now show that the expressions in Eq.~25! are finite
and we calculate the critical density. Clearly,F(z) andF8(z)
both converge forl>0 whenz,b @since the geometric par
(z/b)x dominates the series for largex]. Since 11z(x)
51/b for l50, one can easily calculateF(z)5(zx and
F8(z)5(xzx21. Using the saddle-point equation~17!, one
finds that the densityr is 12z. Therefore, the critical density
is nonzero and is given byrc512b. We anticipated this
result in the discussion in Sec. II in the context of thel
→0 transition in the BRM. Note that the analysis given he
does not make any predictions about the behavior for de
ties belowrc . However, the results presented in Secs. II
r-

’’

e

l

e
i-

and III D, together with the discussion in the context of t
BRM in Sec. II, lead to the conclusion that the low dens
phase comprises a jam in which the leading particle h
forward with probabilityb ~because the site in front of i
contains passengers but no bus!, and all following particles
hop forward with probability 1, so long as the site in fro
contains no bus~which holds with probabilityb).

B. Finite systems

It is possible to analyze the MFM for finite systems sinc
using Eq.~20!, we have

(
x50

L2M

p~x!515 (
x50

L2M
Z~L2x21, M21!q~x!

Z~L,M !
,

which gives the following recurrence relation forZ(L,M ):

Z~L,M !5 (
x50

L2M

Z~L2x21, M21!q~x! ~27!

with the initial conditionZ(L,1)5q(L21).
In principle, one can calculateZ(L,M ) for any L andM .

However, numerical precision restricts the practical ma
mum values ofL and M to ;2000. In practice for these
finite system calculations, it is not feasible to retain the d
pendence ofu(x) on v and so we simply takev5b in the
expression~4! for u(x). This is a good approximation sinc
we are principally interested in the case wherev is close to
b.

C. Comparison with BRM

We now proceed to compare MFM results with BR
simulation data. All the results presented for the MFM a
based on a calculation of the gap size distributionp(x). It is
not possible to obtain a closed analytic expression forp(x)
and so one must perform the calculation numerically fo
given pair of parametersb andl.

Figure 8 showsv(r) for the BRM and the MFM; the
agreement is quite good. Forl50.1, we have found numeri
cally that in the BRM, system size is not an important fac
for large enough systems andv(r) for L51000 is essentially
the same asv(r) in the thermodynamic limit.@The major
part of the small discrepancy between the MFM data foL
51000 andL5` at high density can be attributed to the fa
that the calculation for the finite system is performed withv
being replaced byb in the expression foru(x).#

Recall from Fig. 4 that in the BRM, where we hadL
510 000, forl50.02 andb50.5, v(r) exhibited an appar-
ent discontinuity in its derivative, a possible signal of a pha
transition. For the MFM in the thermodynamic limit with th
same parameters,v(r) is very similar ~see Fig. 8! but we
know that it is actually a smooth function and that there is
transition. This is consistent with our view that there is
fact no phase transition in the BRM forl.0. Figure 8 also
shows that, for this value ofl ~unlike l50.1), there is a
marked finite size effect atL51000 comprising a bump in
v(r). The bump appears for both the BRM numerics and
MFM calculation. The reason for the presence of the bum
that the size of the large gap in front of a jam decreases aL
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decreases, resulting in the ‘‘head’’ of the jam catching
with the ‘‘tail’’ ~and hence an average velocity greater th
b) for densities sufficiently close torc512b.

Figure 9 compares the BRM and MFM gap size distrib
tions for small systems in the jammed regime. The distrib
tions are bimodal with the approximately Gaussian seco
peak corresponding to the presence of a single large ga
the system. The agreement between simulation and MFM
again reasonably good. The MFM distribution in the therm
dynamic limit is also shown and one can see that it dec
monotonically, but very slowly, for large gap sizes. We ha
found that the position of the peak in the tail ofp(x) in-
creases linearly with system size as one would expect—
peak corresponds to the presence of an ‘‘extensive’’ gap~a
gap with size}L).

FIG. 8. Velocity as a function of density for the BRM~simula-
tion! and the MFM~calculation! for l50.1 andl50.02.b is 0.5
and L is 1000. MFM data for the thermodynamic limit is als
shown.

FIG. 9. BRM ~simulation! and MFM ~calculation! gap size dis-
tributions on a linear-log scale for small systems in the jamm
regime (b50.5, l50.02, r50.2). The MFM distribution in the
thermodynamic limit is also shown.
p
n

-
-
d
in
is
-
s

e

e

D. Small l behavior of MFM

We now examine in detail the behavior of the MFM whe
l is small ~but nonzero!. Figure 10 shows the effect on th
MFM gap size distribution of decreasingl towards zero in a
finite system. Forl50.05, p(x) decreases monotonicall
from a maximum atx50. As l is decreased,p(x) becomes
bimodal, signaling the presence of jams. The second p
becomes more pronounced asl is made smaller; jamming is
enhanced.

In order to quantify the behavior ofp(x) as l→0, we
define Pext as the area under the peak in the tail ofp(x).
ThenPext is the probability of finding an extensive gap in th
system andPext3M is the average number of extensive ga
in the system. Figure 11 shows plots ofPext3M againstM
for various values ofl. As l is decreased from 0.05, on
must go to larger systems to observePext3M falling below
1. This suggests that in the limitl→0, a single extensive
gap survives in the thermodynamic limit, supporting o
claim that a condensation~or jamming! transition does occur
in this limit.

d

FIG. 10. MFM gap size distributions on a linear-log scale fo
small system showing the effect of decreasingl. The other param-
eters areb50.5, r50.2, andL51000.

FIG. 11. Pext3M againstM for the MFM showing the effect of
decreasingl. The other parameters areb50.5 andr50.1.
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We showed in Sec. III A that for the MFM in the thermo
dynamic limit, p(x) is proportional to (v/b)x for large x.
Therefore, the typical size of the large gaps in the system
the decay constant ofp(x), given by

j5F lnS b

v D G21

. ~28!

Figure 12 shows a linear-log plot ofj against 1/l for r
50.3. We seej;exp(a/l) ~wherea is a constant! for small
l so that the typical size of the large gaps is very large
l less than about 0.02 and has an essential singularit
l→0. Sincep(x) is sharply peaked atx50 ~see Figs. 9 and
10!, we deduce that for low density and smalll, a MFM
system comprises large clusters of buses that are typica
distancej apart. Clearly, this can only apply ifL@j; if this
is not the case, then the gap size distribution must be bi
dal as seen in Fig. 10.

Figure 13 shows the effect onv(r) of decreasingl to-

FIG. 12. Linear-log plot of the typical large gap sizej against
1/l for the MFM in the thermodynamic limit. The density is fixe
at r50.3 andb is 0.5. The lines are shown to guide the eye.

FIG. 13. Velocity as a function of density for the MFM in th
thermodynamic limit showing the effect of decreasingl. b is 0.5.
is

r
as

a

o-

wards zero in the thermodynamic limit. Asl is decreased, a
‘‘corner’’ becomes apparent at a density slightly below 0
This behavior is also observed in the BRM~see Fig. 4!.
While we know that there is no singularity inv(r) for l
.0, one can see that asl→0, v(r)→b for r,0.5 and
v(r)→12r for r.0.5. We now examine the sharpness
the crossover from the low density jammed regime to t
high density homogeneous regime for smalll.

To estimate the sharpness of the crossover for a given
of parameters, we calculatekmax, which we define to be the
maximum value ofuv9(r)u. Figure 14 shows a linear-log plo
of kmax against 1/l. For l less than about 0.02, we see th
kmax goes as exp(b/l), where b is a constant. Therefore
although a strict phase transition occurs only in the limitl
→0, the crossover is exponentially sharp in 1/l for smalll;
this may be compared with the typical large gap sizej dis-
cussed above, which is also exponentially large in 1/l. For
practical purposes, the crossover may be indistinguisha
from a phase transition as is already the case forl50.02
~see Figs. 4 and 13!. Note that, as mentioned previously, th
thermodynamic andl→0 limits do not commute: for a finite
system the behavior atl50 is trivial ~there are no passen
gers in the system!. This means that in a large but not infinit
system, the sharp crossover will, asl is reduced, resemble a
phase transition most strongly for some nonzerol, l* (L),
and then fade away forl!l* . ~Heuristically, we expect
l* L to be of order unity.!

IV. COARSENING

In this section we discuss the approach to the steady s
in the jamming regime. We have already seen in Fig. 3 th
in finite systems, coarsening of bus clusters~or equivalently
the gaps between clusters! occurs for smalll and low bus
density. Here, by relating the model to a reaction-diffusi
process, we argue that the typical size of the large gaps in
system should eventually grow ast1/2 and we provide nu-
merical evidence for this. We also study numerically the

FIG. 14. Linear-log plot ofkmax against 1/l for the MFM in the
thermodynamic limit.b is 0.5. The lines are shown to guide th
eye.
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laxation of the average particle velocityv(t) and find that it
decays as a power law with an exponent close to21.

The gap size distribution in the jamming regime can
considered as a superposition of the small gaps inside
clusters and the large gaps between these clusters. We d
r (t) to be the mean size of the large gaps. Recall first fr
Sec. III that in a mean-field approximation we expect t
probability that a particle hops into a gap of sizer to be

u~r !5b1~12b!exp~2lr /v !. ~29!

If lr is sufficiently large, the motion of a typical bus clust
therefore becomes uncorrelated with the motion of the c
ter ahead. When two clusters come sufficiently close
gether, they coalesce and form a single cluster. The la
r (t) becomes, the more this coalescence is diffusion do
nated~i.e., correlations in the motion of clusters are reduc!
and the more it resembles a drivenA1A→A reaction-
diffusion process@32# with bus clusters taking the place ofA
particles. In the drivenA1A→A process, the characterist
length scale@of which r (t) is an example# grows ast1/2. ~For
the A1A→A process, the presence of a preferred direct
does not change the scaling from that of the undriven sys
@31#.! We therefore expectt1/2 growth in the BRM when
lr (t) is sufficiently large, i.e., at sufficiently late times.

We have performed simulations on large systems (L55
3105) to investigate the approach to the steady state
these simulations, inspection of the complete gap size di
bution shows that, after a short time, there is a very d
minimum at a gap size of about 20; we observe a neglig
number of gaps of this size. Therefore, in the results p
sented below we have defined a large gap as one with
greater than 20 andr (t) is then the mean size of gaps grea
than 20. In discussing the coarsening in a disordered dr
diffusive model, Krug and Ferrari@20# use the variance o
the complete gap size distribution as their measure of
typical length scale. We have also studied this quantity
we find that its time evolution is entirely consistent with th
of r (t), as one would expect in a scaling regime.

Figure 15 shows log-log plots ofr (t) obtained from simu-
lation. Close inspection of ther (t) curves reveals that the
are straight lines at early times, indicating power law grow
with exponent.0.3. By early times we mean the interv
3000,t,10 000 for the two larger values ofl and 10 000
,t,30 000 for l50.005. However, at later times we se
different behavior as the curves become somewhat conc
particularly for the two larger values ofl.

Since we anticipate thatt1/2 growth will occur only after
r (t) has become sufficiently large for bus clusters to be
correlated, we expectr (t) to be of the form

r ~ t !5r 0~l!1At1/2 ~30!

at late times. The constantA should depend only very
weakly on l if the coarsening process is truly diffusio
dominated. However,r 0 is a measure of how far apart bu
clusters must become to be uncorrelated for a partic
value of l, and so we expect it to vary as;1/l from Eq.
~29!.

Figure 16 shows log-log plots ofr (t)2r 0 for the same
data presented in Fig. 15. The parameterr 0 was estimated by
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fitting the function~30! to the data fort.40 000. For the two
larger values ofl we see that the curves collapse at la
times as expected. The behavior at these late times is
tainly consistent witht1/2 growth. However, the results fo
l50.005 do not fit this picture. We believe that this is b
cause thet1/2 growth regime has not yet been reached for t
value ofl. It appears that asl becomes smaller, the regim
characterized by approximatet0.3 growth increases in dura
tion. Our results suggest that the BRM may exhibit a cro
over from power law growth ofr (t) with exponent.0.3 to
growth with exponent 1/2. We remark that the MFM exhib
similar, but not identical, coarsening behavior.

We now discuss the behavior of the average velocityv(t)
as the steady state is approached. We believe that the
steady-state velocity in the jammed regime of the BRM
very close to, but slightly smaller than,b. Figure 17 shows
the decay ofv(t) towards its steady-state value. The da
although noisy, show clearly thatv(t) relaxes towardsb

FIG. 15. Log-log plots of the average large gap sizer (t) for
small values ofl. Simulations hadL5500 000,r50.2, andb
50.2. Results forl50.01 and 0.005 were averaged over 15 ind
pendent runs and forl50.008, 8 runs. Att50 the buses were
positioned at random and there were no passengers. The da
lines (t1/2 and t0.3) are shown to guide the eye.

FIG. 16. Log-log plots ofr (t)2r 0 for small values ofl. The
data are the same as that presented in Fig. 15. The dashed linet1/2)
is shown to guide the eye.
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50.2 as a power law with an exponent close to21. The data
for later times, although very noisy and not shown, are c
sistent witht21. We have no evidence for a crossover in t
relaxation of v(t) @in contrast tor (t)# but, owing to the
quality of our data, neither can we rule out this possibilit

It is interesting to note that we observe coarsening i
system that does not strictly phase separate. We have alr
argued that for smalll the thermodynamic singularities i
the limit l→0 are replaced by behavior that is smooth b
has crossovers that are exponentially sharp in 1/l. Appar-
ently the l→0 phase transition likewise shows up in th
dynamics where the system appears to phase separate
only up to a finite~but very long! time so that a truly inho-
mogeneous state is never reached. Our study of the MFM
small l in Sec. III D suggests, however, that the final ‘‘h
mogeneous’’ state comprises large clusters of buses s
rated by gaps having a typical size of order exp(1/l); hence
t1/2 growth of the typical large gap size will occur up to som
time exponentially large in 1/l ~for a sufficiently large sys-
tem!. Perhaps not surprisingly, this time scale is of the sa
order of magnitude as our estimate of the time scale
which individual clusters are stable, derived within the tw
particle approximation in Sec. II A.

V. DUAL MODEL: CLOGGING

The above completes our study of the BRM. However,
mentioned in Sec. I, our motivation for studying the mode
mainly connected with its interesting generic behavior~a
driven system with one conserved and one nonconse
variable! rather than its applicability to public transport. I
this section we present an alternative interpretation of
model that further reveals its generic behavior.

One can interpret the BRM in a different way by notin
that each time a bus hops to the right, the site~hole! that the
bus hops into moves to the left. By considering the ‘‘hole
~henceforth we call themparticles! to be the moving entities
in the model and the ‘‘buses’’ to be empty sites, one defi
a dual model.

FIG. 17. Log-log plots ofv(t)-b for small values ofl. Simu-
lations are the same as those for the data shown in Figs. 15 an
The dashed line (t21) is shown to guide the eye. The data ha
been rescaled vertically for clarity.
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A feature of the dual model is that the nonconserved v
able can now be thought of as being ‘‘attached’’ to the mo
ing particles rather than fixed sites as in the original interp
tation. The nonconserved variable ism i , the speed of particle
i , which can either be fast (m i51) or slow (m i5b). If the
dynamics of this dual model is to be exactly the same as
of the BRM, then a particle should attempt to hop to the l
when the site to its left is updated. However, a more natu
dynamics is to only choose particles for update. The f
update rules in the latter case are as follows:~1! Pick a par-
ticle i at random.~2! If m i51 thenm i→b with probability
l. ~3! If there is no particle on the site to the left of partic
i , then it hops to the left with probabilitym i . ~4! If particle i
hops, thenm i→1. This model describes a system of particl
each of which can exist in two states of mobility. A partic
has probabilityl of switching to the less mobile state eac
time step for which it remains stationary. When it final
does move, it is restored to the more mobile state.

While the dual model is not identical to the BRM, w
have checked that the numerical behavior is indeed v
similar. The density of particles is 12r[r8 and we note
that a gap in the BRM is equivalent to a cluster of adjac
particles in the dual model. Thus, the mean-field theories
the two models are equivalent, so long as the hopping
into a gap of sizex in the MFM is interpreted as the hoppin
rate of a particle leaving the left edge of a cluster of sizex in
the dual mean-field theory. Jamming becomes ahigh density
phenomenon here, characterized by the presence of l
clusters of particles. This restores to the word ‘‘jamming’’
meaning closer to that used in everyday life.

We define the average speed of particles asv8. Since in
the BRM the magnitude of the bus current must be equa
the magnitude of the hole current, we have

v85S r

12r D v~r!5S 12r8

r8
D v~12r8!. ~31!

The dual model can be thought of as describing stop-s
traffic flow with the particles representing cars. The longe
car is at rest~usually because a car in front is blocking it!, the
more likely it is that the driver will be slow to react when
is possible to move again. Nowl is the parameter determin
ing the strength of the ‘‘slow-to-start’’ behavior of cars. Th
is similar to several ‘‘slow-to-start’’ cellular automaton tra
fic models studied recently@33,34#. In the study of traffic
flow, the so-called ‘‘fundamental diagram’’~the current
v8r8 as a function of densityr8) is commonly examined.
Figure 18 shows the fundamental diagram for the dual mo
~simulation and MFM! for different values ofl. One can see
that for high densities andl very small, the current is sig
nificantly less than that forl50. It follows from the behav-
ior asl→0 that in the model, an infinitesimal probability fo
cars to become slow to start results in a macroscopic
large decrease in the current at high density.

A different interpretation of the dual model provides
simple picture of another familiar kind of jamming tha
might be called ‘‘clogging.’’ Consider particles suspended
a fluid that is pumped along a narrow pipe. Imagine that
particles, which are comparable in size to the pipe width~so
they cannot pass each other!, have some tendency to stick t

16.
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the walls of the pipe, but that this process takes time to oc
and therefore can only happen if a particle remains station
with respect to the pipe wall for a significant time. A stu
particle will remain stuck if there is another such particle
front of it. If not, the stuck particle will detach from the wa
and move on, but only after a delay. This offers an interp
tation of the dual model in which the attachment rate o
stationary particle isl and the rate at which a stuck partic
will detach and move on isb. ~The parametera is set by the
flow rate of the fluid.! In the limit l→0, a phase transition
then arises from a homogeneous phase in which the part
move quickly, to a jammed phase of inhomogeneous, sl
moving particles. This transition occurs when the parti
density is raised above 12rc , whererc was defined earlier
for the BRM.

More generally, such a model could be taken as a hig
simplified discrete description of any fluid that has a te
dency to clog. There are many fluids that will solidify whe
at rest but remain in a fluid state if kept moving rapid
enough—examples include colloid/polymer mixtures@35#,
clay gels~used as drilling muds in the oil industry! and, in
some circumstances, blood. A similar description might
ply to particulate suspensions~say in a horizontal pipe!,
which, if not kept moving, will settle under gravity into
relatively immobile deposit.

VI. RELEVANCE TO REAL BUSES

While the BRM is not designed to model a real bus ro
with any great accuracy, it is worth commenting on its po
sible relevance to the bus route problem. To do this, we m
relate our model parameters to those of a real~in our case,
Scottish! bus route.L is the number of stops on the circula
route and the bus densityr is the number of buses per sto
We expectr to be quite low~perhaps 0.1!, and hence to be in
the regime where jamming could potentially occur. The p
rametera, which we take to be 1, is inversely proportional

FIG. 18. Particle current as a function of density for dual mo
for different values ofl. For all simulation data,L510 000 and
MFM results are in the thermodynamic limit. The uppermost so
curve is the MFM result in the thermodynamic limit followed b
the limit l→0. The dashed curve is the exact result whenl is set
equal to zero before the thermodynamic limit is taken. The la
two curves are identical forr8,0.5.
ur
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the average time a bus takes to travel from one stop to
next ~with no stopping for passengers!. The parametersb
andl are defined relative toa. The amount by which buse
are delayed owing to their having to pick up passenger
reflected inb. Our choice ofb50.5 is, we believe, a reason
able figure for a city bus route—a bus picking up passeng
at every stop will progress about half as quickly as one t
has no passengers to collect. We interpretl as the probabil-
ity that one or more passengers arrive at a typical bus sto
the time it takes a bus to go from one stop to anot
~roughly a minute, say!. Of course, there is no such thing a
a typical bus stop on a city bus route but we believe thal
should often lie between 0.1 and 1, depending on locat
time of day, and other factors.

In our examination of the BRM up to this point, we hav
primarily studied the limit of large system sizeL. For real
bus routes, however, we expectL, the number of bus stops
to be in the region of 50 to 100. Figure 19~a! shows the
positions of 10 buses in a system of 100 bus stops for
time steps in the steady state, withl50.1. Transient clusters
of buses are clearly visible in the system, a scenario fam
to regular users of the bus route. A similar space-time plo
shown forl50.02 in Fig. 19~b!. As was the case for large
systems, we see a single large cluster of buses that is
tively stable. Our model suggests, therefore, that such c
strophic clusters of buses will not form if the arrival rate
passengers is sufficiently large, but that at some intermed
arrival rates, a given bus is quite likely to be part of a sm
cluster. Of course, as the arrival rate is increased still furth
the BRM predicts an increasingly disordered bus route w
little clustering.

Finally, we wish to comment on the implications of
‘‘hail-and-ride’’ bus system, where there are no fixed b
stops and passengers may hail a bus at any point on
route. In the BRM, this corresponds to a system with a la
number of stops~large L) and very small values of bothl
andb. Hence, one expects the buses to cluster very stron
much as in Fig. 7~with a much lower bus density, however!.

l

r

FIG. 19. Space-time plots of bus positions forr50.2, b50.5,
andL5100. In ~a! l50.1 and in~b! l50.02. There is 1 time step
between each snapshot on the time axis. The system is in the s
state.
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Compounding this problem, withb very small the leading
bus in a cluster moves extremely slowly. Thus, the use o
‘‘hail-and-ride’’ system, while on the surface more conv
nient for passengers, would have dire consequences fo
efficiency of the bus service. However, it is worth pointin
out that on routes used by very few passengers,l might be
so small that one would observe essentiallyl50 behavior,
i.e., a homogeneous system with buses being scarcely
layed. This is because the probability that a site has pas
gers on it cannot be greater thanlL; if lL!1, no bus is
significantly delayed by having to pick up passengers.

VII. DISCUSSION

In this work we have provided strong evidence that
BRM undergoes a jamming transition as a function of
densityr of buses in the limit wherel, the rate of arrival of
passengers, tends to zero. This provides an example
homogeneous system with local, stochastic dynamics
exhibits a jamming transition in one dimension. Although
remains an open problem to find an exact solution of
model, we have shown that the steady state of a mean-
approximation is solvable. This approximation captures
essence of how the ordering into jams occurs—the densit
passengers at a site provides information about the tim
which a bus last visited the bus stop. From the elapsed t
it is inferred how far away the next bus is along the rou
Thus the passengers mediate an effective long range inte
tion between the buses. The nature of the mean-field
proximation is to replace this ‘‘induced’’ interaction~which
is subject to stochastic variation! with a deterministic one.

The transition also has strong analogies with the jamm
transition induced by a single defect particle or disorder@13–
20#. In that case it has been shown that the transition
reminiscent of Bose condensation@19#. In the present mode
an interesting point is that there is no defect bus present
buses are equal. Instead, the system spontaneously sel
bus behind which a jam forms and the waiting passeng
condense in front of this bus. As mentioned in Sec. I
would make very little difference if overtaking of buses we
allowed in the model, since its effect would be merely
interchange the leading two buses of a jam. The new lead
bus would then proceed as slowly as its predecessor.
makes the physics different from the defect mediated c
where unhindered overtaking would prevent a jam from e
arising. We have shown, at least in the two body approxim
tion of Sec. II A, that the time for the lead bus to escape fr
its jam diverges strongly with system size. This may be co
pared with the ‘‘flip time’’ in another model exhibiting spon
taneous symmetry breaking@7#.

The bus route model has an interesting dual model,
scribed in Sec. V. This considers the spaces between bus
be moving entities. If the moving entities are interpreted
cars, the dual model is a particular type of slow-to-start tr
fic model @33,34#. If the moving entities are particles su
pended in a fluid, the dual model is a model of ‘‘clogging
in the transport of sticky particles, or a gelling fluid, down
pipe. In either interpretation, there is~in the limit of smalll)
a phase transition between a homogeneous and an inh
geneous phase; however, the inhomogeneous~jammed!
phase now arises at high density. This contrasts to the B
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itself and related models@13–20# of defect-mediated jam-
ming, for which jams arise when the vehicle density is t
low.

The dual model is, in our view, interesting because
describes the jamming of particles whose mobility depe
on an internal dynamical degree of freedom. This is rep
sented by the nonconserved variablem. In the dual model
itself, the nonconserved variable keeps an internal recor
how long it is since the particle last moved. More genera
however, other models of this type could entail a nonco
served internal variable representing, say, the orientation
rodlike particles.~Such particles would be much more like
to jam in some orientations than others.! We have shown tha
the existence of an additional, nonconserved degree of f
dom is, at least in a specified limit (l→0), enough to cause
a symmetry-breaking phase transition to a jammed state,
homogeneous one-dimensional driven system.

We now comment on our results for nonzerol. Although
we argue that a transition only occurs asl→0, we have
shown that a strong vestige of the transition remains
small values ofl. In fact, in the mean-field theory of th
BRM, the crossover between the two regimes becomes
ponentially sharp in 1/l. Therefore, in practice the crossov
becomes very difficult to distinguish from a strict thermod
namic transition when 1/l is of order 100 or more. The
l→0 transition also strongly influences thedynamicalbe-
havior of the system whenl is small but nonzero: we ob
served coarsening behavior~presumably transient! as would
usually be associated with systems that do strictly ph
separate. All this highlights the fact that care is required
unambiguously identify phase transitions, as opposed
crossover phenomena. Indeed, it is possible that closely
lated crossover phenomena occur in cellular automata m
els of traffic @36,37#.

Finally, we show in Fig. 20 the average time that a p
senger is required to wait for a bus. The system size
10 000, unphysical in terms of real bus routes but repres
tative of the thermodynamic limit. Forl50.1, we see that,
as one would expect, the average waiting time increa
smoothly as the density of buses is reduced. However,
l50.02, it increases very sharply at an intermediate value

FIG. 20. Plot of the mean passenger waiting time as a func
of bus density for two different values ofl. The simulation param-
eters areL510 000 andb50.5.
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the density, and for low densities, the bus service beco
highly inefficient. This figure serves as yet another cruel
minder of the vagaries of the bus route to those whose l
are unfettered by the ownership of a motor car.
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APPENDIX: STEADY STATE SOLUTION
OF MEAN-FIELD MODEL

The MFM comprisesM particles hopping on a 1D ring o
L lattice sites. The probability of hopping into a gap of si
x is u(x) which must obeyu(0)50 ~hard-core exclusion!.
The update is random sequential so that the probability
given particle being updated at each step is 1/M .

A configurationC is completely specified by a sequen
of gap sizes$xi% wherexi is the size of the gap in front of th
i th particle.

In the steady state, the master equation for the system

(
C 8ÞC

W~C→C 8!P~C!5 (
C 8ÞC

W~C 8→C!P~C 8!, ~A1!

whereP(C) is the steady state probability of configurationC
andW(C→C 8) is the probability of an elementary transitio
from C to C 8.

First, consider the right-hand side~RHS! of Eq. ~A1!.
Define C5$x1 , . . . ,xi , . . . ,xM% and Cj5$x1 , . . . ,xj 21
21,xj11, . . . ,xM%. Then the only configurations from
which C can be obtained by an elementary transition are
Cj , with the constraint thatxj 21.0. We therefore have

W~Cj→C!5
1

M
u~xj11! ~A2!

and the RHS of Eq.~A1! becomes

1

M(
j

u~xj11!P~Cj !u~xj 21!, ~A3!

whereu(x) is the usual Heaviside~step! function.
Now consider the LHS of Eq.~A1!. Define Ck

5$x1 , . . . ,xk2111,xk21, . . . ,xM%. The Ck are the only
configurations that can be obtained fromC by an elementary
transition, with the constraint thatxk.0. Therefore we have
.

es
-
s

.

a

is

e

W~C→Ck!5
1

M
u~xk! ~A4!

and the LHS of Eq.~A1! becomes

1

M(
k

u~xk!P~C!u~xk!. ~A5!

Equating Eqs.~A5! and ~A3! gives

(
k

u~xk!P~C!u~xk!5(
j

u~xj11!P~Cj !u~xj 21!.

~A6!

Since periodic boundary conditions apply, the indices on
LHS and RHS of Eq.~A6! can be matched up to give

(
j

u~xj 21!P~C!u~xj 21!5(
j

u~xj11!P~Cj !u~xj 21!.

~A7!

To solve this equation, we assume a product form forP.
We write

P~$xi%!5
1

Z~L,M !
q~x1!•••q~xi !•••q~xM !, ~A8!

whereZ(L,M ) is a normalization. Substituting this produ
form into Eq.~A7! gives

(
j

S)
i

q~xi ! D u~xj 21!Aj50, ~A9!

where

Aj5u~xj 21!2
u~xj11!q~xj 2121!q~xj11!

q~xj 21!q~xj !
. ~A10!

To solve this forq(xj ), make the ansatz that

u~xj 21!
q~xj 21!

q~xj 2121!
5u~xj11!

q~xj11!

q~xj !
~A11!

for xj 21.0. This has the solution

q~x!5 )
y51

x
1

u~y!
, ~A12!

which, together with Eq.~A8!, givesP($xj%) as required.
n-
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@7# C. Godrèche, J.-M. Luck, M. R. Evans, D. Mukamel, S. Sa
dow, and E. R. Speer, J. Phys. A28, 6039~1995!.

@8# P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys. A31, L45
~1998!.

@9# M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel
Phys. Rev. Lett.80, 425 ~1998!.



s.

er

. E

ys.

ys.

y,

.

tt.

1418 PRE 58O. J. O’LOAN, M. R. EVANS, AND M. E. CATES
@10# J. Krug, Phys. Rev. Lett.67, 1882~1991!.
@11# U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phy

Rev. Lett.76, 2746~1996!; Phys. Rev. E57, 4997~1998!.
@12# J. Kertèsz and D. E. Wolf, Phys. Rev. Lett.62, 2571~1989!.
@13# S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A45, 618

~1992!.
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